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Preface 

 

 

 

 
 

 

This Lecture on Algebra is written for students of Advanced Training Programs of 

Mechatronics (from California State University –CSU Chico) and Material Science (from 

University of Illinois- UIUC). When preparing the manuscript of this lecture, we have to 

combine the two syllabuses of two courses on Algebra of the  two programs (Math 031 of 

CSU Chico and Math 225 of UIUC). There are some differences between the two syllabuses, 

e.g., there is no module of  algebraic structures and complex numbers in  Math 225, and no 

module of orthogonal projections and least square approximations in Math 031, etc. 

Therefore, for sake of completeness,  this lecture provides  all the modules of knowledge 

which are given in both syllabuses. Students will be introduced to the theory and applications 

of matrices and systems of linear equations, vector spaces, linear transformations,  

eigenvalue problems, Euclidean spaces,  orthogonal projections and least square 

approximations, as they arise, for instance, from electrical networks, frameworks in 

mechanics,  processes in statistics and linear models, systems of linear differential equations 

and so on. The lecture  is organized in such a way that the students can comprehend the most 

useful knowledge of linear algebra and its applications to engineering problems. 

 

We would like to thank Prof. Tran Viet Dung for his careful reading of the manuscript. His 

comments and remarks lead to better appearance of this lecture. We also thank Dr. Nguyen 

Huu Tien, Dr. Tran Xuan Tiep and all the lecturers of Faculty of Applied Mathematics and 

Informatics for their inspiration and support during the preparation of the lecture.  

 

 

Hanoi, October 20, 2008 

 

 

 

 

Assoc. Prof. Dr. Nguyen Thieu Huy 
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Chapter 1: Sets 

I. Concepts and Basic Operations 

1.1. Concepts of sets: A set is a collection of objects or things. The objects or things 

in the set are called elements (or member) of the set. 

Examples: 

- A set of students in a class. 

- A set of countries in ASEAN group, then Vietnam is in this set, but China is not. 

- The set of real numbers, denoted by R. 

1.2. Basic notations: Let E be a set. If x is an element of E, then we denote by x  E 

(pronounce: x belongs to E). If x is not an element of E, then we write x  E. 

We  use the following notations: 

: “there exists” 

! : “there exists a unique” 

: “ for each” or “for all” 

: “implies” 

: ”is equivalent to” or “if and only if”  

1.3. Description of a set: Traditionally, we use upper case letters A, B, C and set 

braces to denote a set. There are several ways to describe a set. 

a) Roster notation (or listing notation): We list all the elements of a set in a couple 

of braces; e.g., A = 1,2,3,7 or B = Vietnam, Thailand, Laos, Indonesia, Malaysia, Brunei, 

Myanmar, Philippines, Cambodia, Singapore. 

b) Set–builder notation: This is a notation which lists the rules that determine 

whether an object is an element of  the set. 

Example: The set of real solutions of the  inequality x2  2 is  

G = x x  R  and - 22  x  =  - 2,2  

The notation “” means “such that”. 
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c) Venn diagram: Some times we use a closed figure on the plan to indicate a set. 

This is called Venn diagram. 

1.4 Subsets, empty set and two equal sets: 

a) Subsets: The set A is called a subset of a set B if from  x  A it follows that x B. 

We then denote by A  B to indicate that A is a subset of B. 

By logical expression: A  B  ( x A  x B) 

By Venn diagram:  

 

 

 

b) Empty set: We accept that, there is a set that has no element, such a set is called 

an empty set (or void set) denoted by  . 

Note: For every set A, we have that    A. 

c) Two equal sets: Let A, B be two set. We say that A equals B, denoted by A = B, if 

A B and B  A. This can be written in logical expression by  

A = B  (x  A  x  B) 

1.5. Intersection: Let A, B be two sets. Then the intersection of A and B, denoted by 

A  B, is given by: 

A  B = x  xA and xB}. 

This means that  

x A B  (x  A and  x  B). 

By Venn diagram:  

 

1.6. Union: Let A, B be two sets, the union of A and B, denoted by  AB, and given 

by AB = {x xA or xB}. This means that 

B 
A 
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x AB  (x  A or x  B). 

By Venn diagram: 

 

 

1.7. Subtraction: Let A, B be two sets: The subtraction of A and B, denoted by A\B 

(or A–B), is given by 

A\B = {x | xA and xB} 

This means that: 

xA\B  (x  A and xB). 

By Venn diagram:  

 

1.8. Complement of a set: 

Let A and X be two sets such that A  X. The complement of A in X, denoted by 

CXA (or A’ when X is clearly understood), is given by 

CXA = X \ A = {x | xX  and x  A)} 

= {x | x  A} (when X is clearly understood) 

Examples: Consider X =R;  A = [0,3] = {x | xR and 0  x  3} 

     B = [-1, 2] = {x|xR and -1  x  2}. 

Then,  

1. AB = {xR | 0 x  3 and -1  x 2} =  

    = {x R | 0  x  - 1} = [0, -1] 
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2. AB = {xR | 0  x  3 or  -1  x 2} 

    = {xR  -1 x  3} = [-1,3] 

3. A \ B = {x R  0  x  3 and x  [-1,2]} 

    = {xR  2  x 3} = [2,3] 

4. A’ = R \ A = {x  R  x < 0  or  x > 3} 

II. Set equalities 

Let A, B, C be sets. The following set equalities are often used in many problems 

related to set theory. 

1. A  B = BA; AB = BA (Commutative law) 

2. (AB) C = A(BC); (AB)C = A(BC)  (Associative law) 

3. A(BC) = (AB)(AC); A(BC) = (AB)  (AC) (Distributive law) 

4. A \ B = AB’, where  B’=CXB with a set X containing both A and B.  

Proof: Since the proofs of these equalities are relatively simple, we prove only one 

equality (3), the other ones are left as exercises. 

To prove (3), We use the logical expression of the equal sets. 

x  A  (B C)  








CBx

Ax
 

 



















Cx

Bx

Ax

     































Cx

Ax

Bx

Ax

  

   








CAx

BAx
   

 x(AB)(AC) 

This equivalence yields that A(BC) = (AB)(AC). 

The proofs of other equalities are left for the readers as exercises. 
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III. Cartesian products 

3.1. Definition:  

1. Let A, B be two sets. The Cartesian product of A and B, denoted by AxB, is given 

by 

A x B = {(x,y)(xA) and (yB)}. 

2. Let A1, A2…An be given sets. The Cartesian Product of A1, A2…An, denoted by  

A1 x A2 x…x An, is given by A1 x A2 x….An = {(x1, x2…..xn)xi  Ai = 1,2…., n} 

In case, A1 = A2 = …= An = A, we denote 

A1 x A2 x…x An = A x A x A x…x A = An. 

3.2. Equality of elements in a Cartesian product:  

1. Let A x B be the Cartesian Product of the given sets A and B. Then, two elements 

(a, b) and (c, d) of A x B are  equal if and only if a = c and b=d. 

In other words, (a, b) = (c, d)  




=

=

db

ca
 

2. Let A1 x A2 x… xAn be the Cartesian product of given sets A1,…An.  

Then, for (x1, x2…xn) and (y1, y2…yn) in A1 x  A2 x….x An,  we have that  

(x1, x2,…, xn) = (y1, y2,…, yn)  xi = yi  i= 1, 2…., n. 
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Chapter 2: Mappings 

I. Definition and examples 

1.1. Definition: Let X, Y be nonempty sets.  A mapping with domain X and range Y, 

is an ordered triple (X, Y, f) where f assigns to each xX a well-defined f(x) Y.  The 

statement that (X, Y, f) is a mapping is written by  f: X → Y (or   X → Y). 

Here, “well-defined” means that for each xX there corresponds one and only one f(x) Y. 

A mapping is sometimes called a map or a function.  

1.2. Examples:  

1. f: R → R; f(x) = sinx xR, where R is the set of real numbers, 

2. f: X → X; f(x) = x x  X. This is called the identity mapping on the set X, 

denoted by IX 

3. Let X, Y be nonvoid sets, and y0 Y. Then, the assignment f: X → Y; f(x) = y0 x 

X, is a mapping. This is called a constant mapping.  

1.3. Remark: We use the notation  f: X → Y 

                    x   f(x)  

to indicate that f(x) is assigned to x. 

1.4. Remark: Two mappings  X → Y and    U → V are equal if and only if X = U, 

Y=V, and f(x) = g(x) x  X. Then, we write f = g. 

II. Compositions 

2.1. Definition: Given two mappings: f: X → Y and g: Y → W (or shortly,  

X → Y → W), we define the mapping h: X → W by h(x) = g(f(x)) x  X. The mapping h 

is called the composition of g and f, denoted by h = gof, that is, (gof)(x) = g(f(x)) xX. 

2.2. Example:  R →  R+  → R-, here R+ = [0, ) and R- = (-, 0]. 

f(x) = x2 xR; and g(x) = -x x R+. Then, (gof)(x) = g(f(x)) = -x2. 

2.3. Remark: In general, fog  gof. 

           Example:   R →   R   → R;  f(x) = x2; g(x) =  2x + 1 x R. 

f g 

f g 

f g 

f g 

          

f 
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Then (fog)(x) = f(g(x)) = (2x+1)2 x  R, and (gof)(x) = g(f(x)) = 2x2 + 1 x  R. 

Clearly, fog  gof. 

III. Image and Inverse Images  

Suppose that f : X → Y is a mapping.  

3.1. Definition: For S  X, the image of S in a subset of Y, which is defined by 

f(S) = {f(s)sS} = {yYsS with f(s) = y} 

Example: f: R →R, f(x) = x2 x R. 

S = [-1,2]  R; f(S) = {f(s)s[-1, 2]} =  {s2s[-1, 2]} = [0, 4]. 

3.2. Definition: Let T  Y. Then, the inverse image of T is a subset of X, which is 

defined by f-1(T) = {xXf(x) T}. So,  x f-1(T)  if and only if f(x) T. 

Example: f: R\ {2} →R; f(x) =  
2x

1x

−

+
xR\{2}. 

S = (-, -1]  R; f-1(S) = {xR\{2}f(x)  -1} 

= {xR\{2}
2x

1x

−

+
  - 1 }= [-1/2,2). 

3.3. Definition: Let f: X → Y be a mapping. The image of the domain X, f(X), is 

called the image of f, denoted by Imf. That is to say, 

Imf = f(X) = {f(x)xX} = {y YxX with f(x) = y}. 

3.4. Properties of images and inverse images: Let f: X → Y be a mapping; let A, B 

be subsets of X and C, D be subsets of Y. Then, the following properties hold. 

1) f(AB) = f(A) f(B) 

2) f(AB)  f(A)  f(B) 

3) f-1(CD) = f-1(C) f-1(D) 

4) f-1(CD) = f-1(C)  f-1(D) 

Proof: We shall prove (1) and (3), the other properties are left as exercises. 

(1) : Since A  A B and B  AB, it follows that  

f(A)  f(AB) and f(B)  f(AB). 
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These inclusions yield f(A) f(B)  f(AB). 

Conversely, take any y  f(AB). Then, by definition of an Image, we have that, there exists 

an x  A B, such that y = f(x). But, this implies that y = f(x)  f(A) (if x A) or y=f(x)  

f(B) (if x B). Hence, y  f(A)  f(B). This yields that f(AB)  f(A)  f(B). Therefore, 

f(AB) = f(A)  f(B). 

(3):  xf-1(CD)  f(x)  CD  (f(x)  C or  f(x) D) 

 (x f-1(C) or  x  f-1(D))  x  f-1(C)f-1(D) 

Hence, f-1(CD) = f-1(D)) = f-1(C)f-1(D). 

IV. Injective, Surjective, Bijective, and Inverse Mappings 

4.1. Definition: Let f: X → Y be a mapping. 

a. The mapping is called surjective (or onto) if Imf = Y, or equivalently,  

yY, xX such that f(x) = y. 

b. The mapping is called injective (or one–to–one) if the following condition holds: 

For x1,x2X if f(x1) = f(x2), then x1 = x2. 

 This condition is equivalent to: 

For x1,x2X if x1x2, then f(x1)  f(x2).  

c. The mapping is called bijective if it is surjective and injective. 

Examples:  

1. R → R; f(x) = sinx x R. 

This mapping is not injective since f(0) = f(2) = 0. It is also not surjective, because, 

f(R) = Imf = [-1, 1]  R 

2. f: R → [-1,1], f(x) = sinx xR. This mapping is surjective but not injective. 

3. f: 






 
−

2
,

2
 → R; f(x) = sinx x 







 
−

2
,

2
. This mapping is injective but not 

surjective. 

4. f : 






 
−

2
,

2
→[-1,1]; f(x) = sinxx 







 
−

2
,

2
. This mapping is bijective. 

f 
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4.2. Definition: Let f: X → Y be a bijective mapping. Then, the mapping g: Y → X 

satisfying gof = IX and fog = IY is called the inverse mapping of f, denoted by g = f-1. 

For a bijective mapping f: X → Y we now show that there is a unique mapping g: Y →X 

satisfying gof = IX and fog = IY. 

In fact, since f is bijective we can define an assignment g : Y → X by g(y) = x if f(x) = y. 

This gives us a mapping. Clearly, g(f(x)) = x x  X and f(g(y)) = y yY. Therefore, 

gof=IX and fog = IY. 

The above g is unique is the sense that, if h: Y → X is another mapping satisfying hof 

= IX and foh = IY, then h(f(x)) = x = g(f(x)) x  X. Then, y  Y, by the bijectiveness of f, 

!  x X such that f(x) = y  h(y) = h(f(x)) = g(f(x)) = g(y). This means that h = g. 

Examples:  

1. f:  ;1,1
2

,
2

−→






 
−  f(x) = sinx x  







 
−

2
,

2
 

This mapping is bijective. The inverse mapping f-1 :   







−→−

2
,

2
;1,1


 is denoted by 

f-1 = arcsin, that is to say,  f-1(x) = arcsinx x [-1,1]. We also can write: 

 arcsin(sinx)=x x  






 
−

2
,

2
; and sin(arcsinx)=x x [-1,1] 

2. f: R →(0,); f(x) = ex x R. 

The inverse mapping is f-1: (0, ) → R, f-1(x) = lnx x  (0,). To see this, take (fof-1)(x) = 

elnx = x x (0,); and (f-1
of)(x) = lnex = x x R. 
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Chapter 3: Algebraic Structures and Complex Numbers 

 

I. Groups 

1.1. Definition: Suppose that G is non empty set and : GxG → G is a mapping. 

Then,  is called a binary operation; and we will write (a,b) = ab for each (a,b)  GxG. 

Examples:  

1) Consider G = R; “” = “+” (the usual addition in R) is a binary operation defined 

by  

+:  R x R → R 

   (a,b)  a + b 

2) Take G = R; “” = “•” (the usual multiplication in R) is a binary operation defined 

by 

• : R x R → R 

   (a,b)  a • b 

3. Take G = {f: X → X f is a mapping}:= Hom (X) for X  . 

The composition operation “o” is a binary operation defined by: 

o: Hom(X) x Hom(X) → Hom(X) 

                          (f,g)  fog 

1.2. Definition:  

a. A couple (G, ), where G is a nonempty set and  is a binary operation, is called an 

algebraic structure.  

b. Consider the algebraic structure (G, ) we will say that 

       (b1)  is associative if (ab) c = a(bc) a, b, and c in G 

       (b2)  is commutative if ab = ba a, b G 

       (b3) an element e  G is the neutral element of G if 

                  ea = ae = a aG 
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Examples:  

1. Consider (R,+), then “+” is associative and commutative; and 0 is a neutral 

element. 

2. Consider (R, •), then “•” is associative and commutative and 1 is an neutral 

element. 

3. Consider (Hom(X), o), then “o” is associative but not commutative; and the 

identity mapping IX is an neutral element. 

1.3. Remark: If a binary operation is written as +, then the neutral element will be 

denoted by 0G (or 0 if G is clearly understood) and called the null element. 

             If a binary operation is written as , then the neutral element will be denoted by 1G 

(or 1) and called the identity element. 

1.4. Lemma: Consider an algebraic structure (G, ). Then, if there is a neutral 

element e G, this neutral element is unique. 

Proof: Let e’ be another neutral element. Then, e = ee’ because e’ is a neutral 

element and e’ = ee’ because e is a neutral element of G. Therefore e = e’. 

1.5. Definition: The algebraic structure (G, ) is called a group if the following 

conditions are satisfied:  

 1.  is associative 

 2. There is a neutral element eG 

 3. a G, a’ G such that aa’ = a’a = e 

Remark: Consider a group (G, ). 

a. If  is written as +, then (G,+) is called an additive group. 

b. If  is written as •, then (G, •) is called a multiplicative group. 

c. If  is commutative,  then (G, ) is called abelian group (or commutative group). 

d. For a  G, the element a’G such that aa’ = a’a=e, will be called the opposition 

of a, denoted by 

a’ = a-1, called inverse of a,  if  is written as • (multiplicative group) 

a’ = - a, called negative of a,  if  is written as + (additive group)  
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Examples:  

1. (R, +) is abelian additive group. 

2. (R\{0}, •) is abel multiplicative group. 

3. Let X be nonempty set; End(X) = {f: X → X  f is bijective}.  

Then, (End(X), o) is noncommutative group with the neutral element is IX, where o is 

the composition operation. 

1.6. Proposition:  

Let (G, ) be a group. Then, the following assertions hold. 

1. For a G, the inverse a-1 of a is unique. 

2. For a, b, c  G we have that 

ac = bc  a = b 

ca = cb  a = b 

(Cancellation law in Group) 

3. For a, x, b  G, the equation ax = b has a unique solution x = a-1b. 

Also, the equation xa = b has a unique solution x = ba-1 

Proof:  

1. Let a’ be another inverse of a. Then, a’a = e. It follows that  

(a’a) a-1 = a’ (aa-1) = a’e = a’. 

2. ac = ab  a-1 (ac)  a-1 (ab)  (a-1a) c = (a-1a) b  ec = eb  c = b. 

Similarly, ca = ba  c = b. 

The proof of (3) is left as an exercise. 

 

II. Rings 

2.1. Definition: Consider triple (V, +, •) where V is a nonempty set; + and • are 

binary operations on V. The triple (V, +, •) is called a ring if the following properties are 

satisfied: 
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(V, +) is a commutative group 

Operation “•” is associative 

 a,b,c  V we have that (a + b) •c = a•c + b•c, and c•(a + b) = c•a + c•b 

V has identity element 1V corresponding to operation “•” , and we call 1V  the  

                                                  multiplication identity. 

If, in addition, the multiplicative operation is commutative then the ring (V, +, •) is called a 

commutative ring. 

2.2. Example: (R, +, •) with the usual additive and multiplicative operations, is a 

commutative ring. 

2.3. Definition: We say that the ring is trivial if it contains only one element, V = 

{OV}. 

Remark: If V is a nontrivial ring, then 1V OV. 

2.4. Proposition: Let (V, +, •) be a ring. Then, the following equalities hold. 

1. a.OV  = OV.a = OV 

2. a • (b – c) = a•b – a•c, where b – c is denoted for b + (-c) 

3. (b–c) •a = b•a – c•a 

III. Fields 

3.1. Definition: A triple (V, +, •) is called a field if (V, +, •) is a commutative, 

nontrivial ring such that, if a  V and a  OV then a has a multiplicative inverse a-1 V. 

Detailedly, (V, +, •) is a field if and only if the following conditions hold: 

     (V, +) is a commutative group,  

     the multiplicative operation is associative and commutative, 

      a,b,cV we have that (a + b) •c = a•c + a•b,  

      there is multiplicative identity 1V  OV; and if aV, a  OV,  then a-1 V,  a-1
•a = 1V. 

3.2. Examples: (R, +, •); (Q, +, •) are fields. 

IV. The field of complex numbers 

Equations without real solutions, such as x2 + 1 = 0 or x2 – 10x + 40 = 0, were 

observed early in history and led to the introduction of complex numbers. 
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4.1. Construction of the field of complex numbers:  On the set R2, we consider 

additive and multiplicative operations defined by 

(a,b) + (c,d) = (a + c, b + d) 

(a,b) • (c,d) = (ac - bd, ad + bc) 

Then, (R2, +, •) is a field. Indeed, 

 1)  (R2, +, •) is obviously a commutative, nontrivial ring with null element (0, 0) and 

identity element (1,0)  (0,0). 

  2) Let now (a,b)  (0,0), we see that the inverse of (a,b) is (c,d) = 










+
−

+ 2222
ba

b
,

ba

a
 since (a,b) • 









+
−

+ 2222
ba

b
,

ba

a
 = (1,0). 

We can present R2 in the plane 

 

We remark that if two elements (a,0), (c,0) belong to horizontal axis, then their sum 

(a,0) + (c,0) = (a + c, 0) and their product (a,0)•(c,0) = (ac, 0) are still belong to the 

horizontal axis, and the addition and multiplication are operated as the addition and 

multiplication in the set of real numbers. This allows to identify each element on the 

horizontal axis with a real number, that is (a,0) = a  R. 

Now, consider i = (0,1). Then, i2 = i.i = (0, 1). (0, 1) = (-1, 0) = -1. With this notation, 

we can write: for (a,b) R2 

(a,b) = (a,0) • (1,0) + (b,0) • (0,1) = a + bi 



Nguyen Thieu Huy, Lecture on Algebra 

 18 

We set C = {a + bia,b R and i2 = -1} and call C the set of complex numbers. It follows 

from above construction that (C, +, •) is a field which is called the field of complex 

numbers. 

The additive and multiplicative operations on C can be reformulated as. 

(a+bi) + (c+di) = (a+c) + (b+d)i 

(a+bi) • (c+di) = ac + bdi2 + (ad + bc)i = (ac – bd) + (ad + bc)i 

(Because i2=-1). 

Therefore, the calculation is done by usual ways as in R with the attention that i2 = -1. 

The representation of a complex number z  C as z = a + bi for a,bR and i2 = -1, is called 

the canonical form (algebraic form) of a complex number z. 

4.2. Imaginary and real parts: Consider the field of complex numbers C. For z C, 

in canonical form, z can be written as 

z = a + bi, where a, b R and i2 = -1. 

In this form, the real number a is called the real part of z; and the real number b is called the 

imaginary part. We denote by a = Rez and b = Imz. Also, in this form, two complex numbers 

z1 = a1 + b1i and z2 = a2 + b2i are equal if and only if a1 = a2; b1 = b2, that is, Rez1=Rez2  and  Imz1 = Imz2. 

4.3. Subtraction and division in canonical forms: 

1) Subtraction: For z1 = a1 + b1i and z2 = a2 + b2i, we have 

z1 – z2 = a1 – a2 + (b1 – b2)i. 

Example: 2 + 4i – (3 + 2i) = -1 + 2i. 

2) Division: By definition, )( 1

21

2

1 −= zz
z

z
 (z2 0). 

For z2 = a2 + b2i, we have i
ba

b

ba

a
z

2

2

2

2

2

2

2

2

2

21

2
+

−
+

=− . Therefore,  

( ) ..
2

2

2

2

2

2

2

2

2

2
11

22

11












+
−

+
+=

+

+

ba

ib

ba

a
iba

ba

iba
 We also have the following  

practical rule: To compute 
iba

iba

z

z

22

11

2

1

+

+
=  we multiply both denominator and numerator by 

a2 – b2i, then simplify the result. Hence, 
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( )
2

2

2

2

21122121

22

22

22

11

22

11 .
ba

ibababbaa

iba

iba

iba

iba

iba

iba

+

−++
=

−

−

+

+
=

+

+
 

Example: i
i

i

i

i

i

i

i

73

62

73

5

73

625

38

38
.

38

72

38

72
−

−
=

−−
=

−

−

+

−
=

+

−
 

4.4. Complex plane: Complex numbers admit two natural geometric interpretations. 

First, we may identify the complex number x + yi with the point (x,y) in the plane 

(see Fig.4.2). In this interpretation, each real number a, or x+ 0.i, is identified with the point 

(x,0) on the horizontal axis, which is therefore called the real axis. A number 0 + yi, or just 

yi, is called a pure imaginary number and is associated with the point (0,y) on the vertical 

axis. This axis is called the imaginary axis. Because of this correspondence between complex 

numbers and points in the plane, we often refer to the xy-plane as the complex plane. 

 

Figure 4.2 

When complex numbers were first noticed (in solving polynomial equations), 

mathematicians were suspicious of them, and even the great eighteen–century Swiss 

mathematician Leonhard Euler, who used them in calculations with unparalleled proficiency, 

did not recognize then as “legitimate” numbers. It was the nineteenth–century German 

mathematician Carl Friedrich Gauss who fully appreciated their geometric significance and 

used his standing in the scientific community to promote their legitimacy to other 

mathematicians and natural philosophers. 

The second geometric interpretation of complex numbers is in terms of vectors. The 

complex numbers z = x + yi may be thought of as the vector x
→

i +y
→

j in the plane, which may 

in turn be represented as an arrow from the origin to the point (x,y), as in Fig.4.3. 
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Fig. 4.3. Complex numbers as vectors in the plane 

 

Fig.4.4. Parallelogram law for addition of complex numbers 

The first component of this vector is Rez, and the second component is Imz. In this 

interpretation, the definition of addition of complex numbers is equivalent to the 

parallelogram law for vector addition, since we add two vectors by adding the respective 

component (see Fig.4.4). 

4.5. Complex conjugate: Let z = x +iy be a complex number then the complex 

conjugate z  of  z is defined by z  = x – iy. 

It follows immediately from definition that 

Rez = x = (z + z )/2; and Imz = y = (z - z )/2 

We list here some properties related to conjugation, which are easy to prove. 

1. 2121 zzzz +=+  z1, z2 in C 

2. 2121 .. zzzz =   z1, z2 in C 

z 
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3. 
2

1

2

1

z

z

z

z
=








  z1, z2 in C 

4. if α  R and z  C, then zz ..  =  

5. For z C we have that, z R if and only if zz = . 

4.6. Modulus of  complex numbers:  For z = x + iy  C we define z=
22

yx + , 

and call it modulus of z. So, the modulus z is precisely the length of the vector which 

represents z in the complex plane. 

z = x + i.y = OM  

z= OM =
22

yx +  

4.7. Polar (trigonometric) forms of complex numbers: 

The canonical forms of complex numbers are easily used to add, subtract, multiply or 

divide complex numbers. To do more complicated operations on complex numbers such as 

taking to the powers or roots, we need the following form of complex numbers. 

Let we start by employ the polar coordination: For z = x + iy 

0  z = x + iy = OM  = (x,y). Then we can put  




=

=





sin

cos

ry

rx
  

where                                                  r = z = 
22

yx +                                       (I)  

and  is angle between OM  and the real axis, that is, the angle  is defined by  













+
=

+
=

22

22

sin

cos

yx

y

yx

x





                                                 (II) 

The equalities (I) and (II) define the unique couple (r, ) with 0<2 such that 





=

=





sin

cos

ry

rx
. From this representation we have that  
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z = x + iy = 
22

yx +














+
+

+ 2222 yx

y
i

yx

x
 

= z(cos + isin).  

Putting z = r we obtain 

z = r(cos+isin). 

This form of a complex number z is called polar (or trigonometric) form of complex 

numbers, where r = z is the modulus of z; and the angle  is called the argument of z, 

denoted by  = arg (z). 

Examples: 

1)  z = 1 + i = 






 
+


=








+

4
sini

4
cos2

2

1
i

2

1
2  

2)  z = 3 - 














 
−+







 
−=













−=

3
sini

3
cos6i

2

3

2

1
6i33  

Remark: Two complex number in polar forms z1 = r1(cos1 + isin1); z2 = r2(cos2 + 

isin2) are equal if and only if 





+=

=

k2

rr

21

21
 k Z. 

4.8. Multiplication, division in polar forms: 

We now consider the multiplication and division of complex numbers represented in polar 

forms. 

1) Multiplication: Let  z1 = r1(cos1 + isin1) ; z2 = r2(cos2+isin2) 

Then, z1.z2 = r1r2[cos1cos2 - sin1sin2+i(cos1sin2 + cos2sin1)]. Therefore, 

                                               z1.z2 = r1r2[cos(1+2) + isin(1+2)].                      (4.1) 

It follows that z1.z2=z1.z2 and arg (z1.z2) = arg(z1) + arg(z2). 

2) Division: Take z = = 21

2

1 .zzz
z

z
z1 = z.z2 (for z2 0) 
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 z = 
2

1

z

z
 

Moreover, arg(z1) = argz+argz2  arg(z) =arg(z1) – arg(z2). 

Therefore, we obtain that, for z1=r1(cos1+isin1) and z2 = r2(cos2 + isin2) 0. 

We have that                                 
2

1

2

1

r

r
z

z

z
== [cos(1-2) + isin(1-2)].                      (4.2) 

Example: z1 = -2 + 2i; z2 = 3i. 

We first write z1 = 2 2 







+=








+

2
sin

2
cos3;

5

5
sin

4

3
cos 2


izi  

Therefore, z1.z2 = 6 







+

4

5
sin

4

5
cos2


i  

  







+=

4

5
sin

4
cos

3

22

2

1 
i

z

z
 

3) Integer power: for z = r(cos + isin), by equation (4.1), we see that  

z2 = r2(cos2 + isin2).  

By induction, we easily obtain that zn = rn(cosn + isinn) for all nN. 

Now, take  z-1 = ( ) ( ))sin()cos()sin()cos(
11 1  −+−=−+−= − iri
rz

. 

Therefore z-2 = ( ) ( ))2sin()2cos(221  −+−= −− irz . 

Again, by induction, we obtain: z-n = r-n(cos(-n) + isin(-n)) nN. 

This yields that zn = rn(cosn + isinn) for all n Z. 

A special case of this formula is the formula of de Moivre:  

(cos + isin)n = cosn + isinn nN. 

Which is useful for expressing cosn and sinn in terms of cos and sin. 

4.9. Roots: Given z C, and n N* = N \ {0}, we want to find all w C such that wn = z. 

To find such  w, we use the polar forms. First, we write z = r(cos + isin) and w = (cos + 

isin).  We now determine  and .  Using relation wn = z, we obtain that 
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n(cosn + isinn) = r(cos + isin) 










+

=

=






+=

=


Zk
n

k

r

Zkkn

r
n

n

;
2

r) ofroot  positive (real

 ;2









 

Note that there are only n distinct values of w, corresponding to k = 0, 1…, n-1. Therefore, w 

is one of the following values 









−=






 +
+

+
1n...,1,0k

n

k2
sini

n

k2
cosrn

 

For z = r(cos + isin) we denote by 









−=






 +
+

+
= 1...2,1,0

2
sin

2
cos nk

n

k
i

n

k
rz nn 

 

and call n z  the set of all nth roots of complex number z. 

For each w  C such that wn = z, we call w an nth root of z and write w  n z . 

Examples:  

1. 33 )0sin0(cos11 i+=  (complex roots) 

= 








=







+ 2,1,0

3

2
sin

3

2
cos1 k

k
i

k 
 

= 









−−+− i
2

3

2

1
;i

2

3

2

1
;1  

2. Square roots: For Z = r(cos+isin)  C, we compute the complex square roots       

( ) sincos irz += = 

=












=






 +
+

+
1,0

2

2
sin

2

2
cos k

k
i

k
r


 

=
















+−








+

2
sin

2
cos;

2
sin

2
cos


irir . Therefore, for z  0; the set z  

contains two opposite values {w, -w}. Shortly, we write wz =  (for w2 = z). 

Also, we have the practical formula, for z = x + iy, 
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                                   ( ) ( )

























−++= xziysignxzz

2

1
).(

2

1
                   (4.3) 

where signy = 
1 0

1 0

if y

if y . 

3. Complex quadratic equations: az2 + bz + c = 0; a,b,c C; a  0. 

By the same way as in the real-coefficient case, we obtain the solutions z1,2 = 

a2

wb −
where w2 =  = b2- 4acC. 

Concretely, taking z2 – (5+i)z + 8 + i = 0, we have that  = -8+6i. By formula (4.3), 

we obtain that  

 =w = (1 + 3i) 

Then, the solutions are z1,2 = 
2

)i31(i5 ++
 or z1 = 3 + 2i; z2 = 2 – i. 

We finish this chapter by introduce (without proof) the Fundamental Theorem of 

Algebra. 

4.10. Fundamental Theorem of Algebra: Consider the polynomial equation of 

degree n in C:  

                 anx
n + an-1x

n-1 +…+ a1x + a0 = 0; ai C i = 0, 1, …n. (an0)                (4.4) 

Then, Eq (4.4) has n solutions in C. This means that, there are complex numbers x1, 

x2….xn, such that the left-hand side of (4.4) can be factorized by 

anx
n + an-1x

n-1 + … + a0 = an(x - x1)(x - x2)…(x - xn). 
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Chapter 4: Matrices 

I. Basic concepts 

Let K be a field (say, K = R or C). 

1.1. Definition: A matrix is a rectangular array of numbers (of a field K) enclosed in 

brackets. These numbers are called entries or elements of the matrix  

Examples 1:  
2 0.4 8 6 2 3

; ; 1 5 4 ;
5 32 0 1 1 8

     
     

−     
. 

Note that we sometimes use the brackets ( . ) to indicate matrices. 

The notion of matrices comes from variety of applications. We list here some of them 

Sales figures: Let a store have products I, II, III. Then, the numbers of sales of each 

product per day can be represented by a matrix 



















98690

537120

43152010

FridayThursdayWednesdayTuesdayMonday

III

II

I

 

- Systems of equations: Consider the system of equations 









=−+

=−−

=+−

0z4yx2

0z2y3x6

2zy10x5

 

Then the coefficients can be represented by a matrix 

















−−

−

412

236

1105

 

We will return to this type of coefficient matrices later. 

1.2. Notations: Usually, we denote matrices by capital letter A, B, C or by writing the 

general entry, thus 

A = [ajk], so on… 
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By an mxn  matrix we mean a matrix with m rows (called row vectors) and n 

columns (called column vectors). Thus, an mxn matrix A is of the form: 

A = 



















mnmm

n

n

aaa

aaa

aaa










21

22221

11211

. 

Example 2: On the example 1 above  we have the 2x3; 2x1; 1x3 and 2x2 matrices, 

respectively. 

In the double subscript notation for the entries, the first subscript is the row, and the 

second subscript is the column in which the given entry stands. Then, a23 is the entry in row 

2 and column 3. 

If m = n, we call  A an n-square matrix. Then, its diagonal containing the entries a11, 

a22,…, ann is called the main diagonal (or principal diagonal) of A. 

1.3. Vectors: A vector is a matrix that has only one row – then we call it a row vector, 

or only one column - then we call it a column vector. In both case, we call its entries the 

components. Thus, 

A = [a1 a2 …an] – row vector 

B = 



















nb

b

b


2

1

 - column vector. 

1.4. Transposition: The transposition AT of an mxn matrix A = [ajk] is the nxm 

matrix that has the first row of A as its first column, the second row of A as its second 

column,…, and the mth
 row of A as its mth column. Thus, 

for A = 



















mnmm

n

n

aaa

aaa

aaa

...

...

...

21

22221

11211


 we have that AT = 



















mnnn

m

m

aaa

aaa

aaa

...

...

...

21

22212

12111


 

Example 3: A = 

















=








73

02

41

A;
704

321 T
 

 



Nguyen Thieu Huy, Lecture on Algebra 

 28 

II. Matrix addition, scalar multiplication 

2.1. Definition:  

1. Two matrices are said to have the same size if they are both mxn. 

2. For two matrices A = [ajk]; B = [bjk] we say A = B if they have the same size and 

the corresponding entries are equal, that is, a11 = b11; a12 = b12, and  so on… 

2.2. Definition: Let A, B be two matrices having the same sizes. Then their sum, 

written A + B, is obtained by adding the corresponding entries. (Note: Matrices of different 

sizes can not be added)  

Example: For A =  







=







 −

417

502
;

241

132
B  

A + B = 







=









+++

+−++

658

434

421471

5)1(0322
 

2.3. Definition: The product of an mxn matrix A = [ajk] and a number c (or scalar c), 

written cA, is the mxn matrix cA = [cajk] obtained by multiplying each entry in A by c. 

Here, (-1)A is simply written –A and is called negative of A;    (-k)A is written – kA, 

also A +(-B) is written A – B and is called the difference of A and B. 

Example: 

For A = 

















−

−

73

41

52

 we have 2A = 

















−

146

82

104

; and  - A =

















−

−

−−

73

41

52

;  

0A = 

















00

00

00

. 

2.3. Definition: An mxn zero matrix is an mxn matrix with all entries zero – it is 

denoted by O. 

Denoted by Mmxn(R) the set of all mxn matrices with the entries being real numbers. 

The following properties are easily to prove. 
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2.4. Properties: 

1. (Mmxn(R), +) is a commutative group. Detailedly, the matrix addition has the 

following properties. 

   (A+B) + C = A + (B+C) 

   A + B = B + A 

   A + O = O + A = A 

   A + (-A) = O (written A – A = O) 

2. For the scalar multiplication we have that (,  are numbers) 

  (A + B) = A + B 

              (+)A = A + A 

  ()A = (A) (written A) 

  1A = A. 

3. Transposition: (A+B)T = AT+BT 

                            (A)T=AT. 

 

III. Matrix multiplications 

3.1. Definition: Let A = [ajk] be an mxn matrix, and B = [bjk] be an nxp matrix. Then, 

the product C = A.B (in this order) is an mxp matrix defined by 

C = [cjk], with the entries: 

cjk = aj1b1k + aj2b2k + …+ ajnbnk = 
=

n

l

lkjlba
1

 where j = 1, 2,…, m; k = 1,2,…,p. 

That is, multiply each entry in jth
 row of A by the corresponding entry in the kth

 

column of B and then add these n products. Briefly, “multiplication of rows into columns”. 

We can illustrate by the figure 
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                                                          kth column                   k  

jth row 

1

2

3
1 2 3

... ...

... ... ...

... ...

k

k

k
j j j jn jk

nk

b

b

b
a a a a c

b

 j 

                          A                          B                           C       

Note: AB is defined only if the number of columns of A is equal to the number of 

rows of B. 

Example: 

( )

( )

( )















−+−+

−++

−++

=








−
















1053)1(023

12521222

14511421

11

52

03

22

41

= 

= 

















156

86

16

. 

Exchanging the order, then 


























−
03

22

41

11

52
 is not defined 

Remarks: 

1) The matrix multiplication is not commutative, that is, AB BA in general. 

 

Examples: 

A = 








00

10
; B = 









00

01
, then 

AB = O and BA = 








00

01
. Clearly, ABBA. 

2) The above  example also shows that, AB = O does not imply A = O or B = O. 
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3.2 Properties: Let A, B, C be matrices and k be a number. 

a) (kA)B = k(AB) = A(kB) (written k AB) 

b) A(BC) = (AB)C (written ABC) 

c) (A+B).C = AC + BC 

d) C (A+B) = CA+CB 

provided, A,B and C are matrices such that the expression on the left are defined. 

IV. Special matrices 

4.1. Triangular matrices: A square matrix whose entries above the main diagonal are 

all zero is called a lower triangular matrix. Meanwhile, an upper triangular matrix is a square 

matrix whose entries below the main diagonal are all zero. 

Example:  A = 















 −

300

400

121

- Upper triangular matrix 

  B = 

















002

073

001

 - Lower triangular matrix 

4.2. Diagonal matrices: A square matrix whose entries above and below the main 

diagonal are all zero, that is ajk = 0 jk is called a diagonal matrix. 

Example: 

















300

000

001

 

4.3. Unit matrix: A unit matrix is the diagonal matrix whose entries on the main 

diagonal are all equal to 1. We denote the unit matrix by In (or I) where the subscript n 

indicates the size nxn of the unit matrix. 

Example: I3 = 

















100

010

001

; I2 = 








10

01
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Remarks: 1) Let A  Mmxn (R) – set of all mxn matrix whose entries are real 

numbers. Then, 

AIn = A = ImA. 

2) Denote by Mn(R) = Mnxn(R), then,  (Mn(R), +, •) is a noncommutative ring where 

+ and • are the matrix addition and multiplication, respectively. 

4.4. Symmetric and antisymmetric matrices: 

A square matrix A is called symmetric if AT=A, and it is called anti-symmetric (or 

skew-symmetric) if AT = -A. 

4.5. Transposition of matrix multiplication: 

(AB)T = BTAT provided AB is defined. 

4.6. A motivation of matrix multiplication: 

Consider the transformations (e.g. rotations, translations…) 

 

The first transformation is defined by 




+=

+=

2221212

2121111

wawax

wawax
 (I) 

or, in matrix form 







=
















=









2

1

2

1

2221

1211

2

1

w

w
A

w

w

aa

aa

x

x
. 

The second transformation is defined by 





+=

+=

2221212

2121111

xbxby

xbxby
 (II) 

or, in matrix form 







=
















=









2

1

2

1

2221

1211

2

1

x

x
B

x

x

bb

bb

y

y
. 
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To compute the formula for the composition of these two transformations we 

substitute (I) in to (II) and obtain that   













+=

+=

+=

+=





+=

+=

2222122122

2122112121

2212121112

2112111111

2221212

2121111
 where

ababc

ababc

ababc

ababc

wcwcy

wcwcy
. 

This yields that: C = 








2221

1211

cc

cc
 = BA; and 








=









2

1

2

1

w

w
BA

y

y
 

However, if we use the matrix multiplication, we obtain immediately that 









=








=









2

1

2

1

2

1

w

w
A.B

x

x
B

y

y
 

Therefore, the matrix multiplication allows to simplify the calculations related to the 

composition of the transformations. 

V. Systems of Linear Equations 

We now consider one important application of matrix theory. That is, application to 

systems of linear equations. Let us start by some basic concepts of systems of linear 

equations. 

5.1. Definition: A system of m linear equations in n unknowns x1, x2,…,xn is a set of 

equations of the form 

                                          













=+++

=+++

=+++

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

...

...

2211

22222121

11212111


                                  (5.1) 

Where, the ajk; 1jm, 1kn, are given numbers, which are called the coefficients of 

the system. The bi, 1 i m, are also given numbers. Note that the system (5.1) is also called 

a linear system of equations. 

If bi, 1im, are all zero, then the system (5.1) is called a homogeneous system. If at 

least one bk is not zero, then (5.1) in called a nonhomogeneous system. 
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A solution of (5.1) is a set of numbers x1, x2…,xn that satisfy all the m equations of 

(5.1). A solution vector of (5.1) is a column vector X = 



















nx

x

x


2

1

 whose components constitute a 

solution of (5.1). If the system (5.1) is homogeneous, it has at least one trivial solution x1 = 

0, x2 = 0,...,xn = 0. 

5.2. Coefficient matrix and augmented matrix: 

We write the system (5.1) in the matrix form:          AX = B, 

where A = [ajk] is called the coefficient matrix; X = 



















nx

x

x


2

1

 and B = 



















mb

b

b


2

1

 are column vectors. 

The matrix A
~

 =  BA  is called the augmented matrix of the system (5.1). A
~

 is 

obtained by augmenting A by the column B. We note that A
~

 determines system (5.1) 

completely, because it contains all the given numbers appearing in (5.1). 

VI. Gauss Elimination Method 

We now study a fundamental method to solve system (5.1) using operations on its 

augmented matrix. This method is called Gauss elimination method. We first consider the 

following example from electric circuits. 

6.1. Examples:   

Example 1: Consider the electric circuit 
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Label the currents as shown in the above figure, and choose directions arbitrarily. We 

use the following Kirchhoffs laws to derive equations for the circuit: 

+ Kirchhoff’s current law (KCL) at any node of a circuit, the sum of the inflowing 

currents equals the sum of the outflowing currents. 

+ Kirchhoff’s voltage law (KVL). In any closed loop, the sum of all voltage drops 

equals the impressed electromotive force. 

Applying KCL and KVL to above circuit we have that  

Node P: i1 – i2 + i3 = 0 

Node Q: - i1 + i2 – i3 = 0 

Right loop: 10i2 + 25i3 = 90 

Left loop: 20i1 + 10i2 = 80 

Putting now x1 = i1; x2 = i2; x3 = i3 we obtain the linear system of equations  













=+

=+

=−+−

=+−

80x10x20

90x25x10

0xxx

0xxx

21

32

321

321

                       (6.1) 

This system is so simple that we could almost solve it by inspection. This is not the 

point. The point is to perform a systematic method – the Gauss elimination – which will 

work in general, also for large systems. It is a reduction to “triangular form” (or, precisely, 

echelon form-see Definition 6.2 below) from which we shall then readily obtain the values of 

the unknowns by “back substitution”. 

We write the system and its augmented matrix side by side: 

Equations 

          Pivot → x1 -x2 + x3 = 0 

   Eliminate → 

 

 

-x1 

 

20x1 

+x2- x3 = 0 

10x2+25x3 = 90 

+10x2 = 80 

             

Augmented matrix:                 

A
~

  =  



















−−

−

8001020

9025100

0111

0111
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First step: Elimination of x1 

Call the first equation the pivot equation and its x1 – term the pivot in this step, and 

use this equation to eliminate x1 (get rid of x1) in other equations. For this, do these 

operations. 

Add the pivot equation to the second equation;  

Subtract 20 times the pivot equation from the fourth equation. 

This corresponds to row operations on the augmented matrix, which we indicate behind the 

new matrix in (6.2). The result is 













=−

=+

=

=+−

80x20x30

90x25x10

00

0xxx

32

32

321

   
Row41Row204Row

Row2Row1  Row2

8020300

9025100

0000

0111

→−

→+



















−

−

            (6.2) 

Second step: Elimination of x2 

The first equation, which has just served as pivot equation, remains untouched. We 

want to take the (new) second equation as the next pivot equation. Since it contain no x2-

term (needed as the next pivot, in fact, it is 0 = 0) – first we have to change the order of 

equations (and corresponding rows of the new matrix) to get a nonzero pivot. We put the 

second equation (0 = 0) at the end and move the third and the fourth equations one place up. 

We get 

                         x1 -  x2      +     x3 = 0 

       Pivot → 10x2 +25x3 = 90 

Eliminate → 

 

30x2 

 

-20x3 =80 

0 = 0 

To eliminate x2, do 

               Subtract 3 times the pivot equation from the third equation, the result is 

Corresponding to   



















−

−

0000

8020300

9025100

0111
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x1 – x2 + x3 = 0 

10x2 + 25x3 = 90 

-95x3 = -190 

0 = 0 

3233

0000

1909500

9025100

0111

RowRowRow →−



















−−

−

               (6.3) 

Back substitution: Determination of x3, x2, x1. 

Working backward from the last equation to the first equation the solution of this 

“triangular system” (6.3), we can now readily find x3, then x2 and then x1: 

-95x3 = -190 

10x2 + 25x3 = 90 

x1 – x2 + x3 = 0 

 

    

i3 = x3 = 2 (amperes) 

i2 = x2 = 4 (amperes) 

i1 = x1 = 2 (amperes) 

Note: A system (5.1) is called overdetermined if it has more equations than 

unknowns, as in system (6.1), determined if m = n, and underdetermined if (5.1) has fewer 

equations than unknowns. 

Example 2: Gauss elimination for an underdetermined system. Consider  









=+−−

=−++

=−++

21243312

275415156

85223

4321

4321

4321

xxxx

xxxx

xxxx

 

The augmented matrix is: 

















−−

−

−

21243312

275415156

85223

 

1st step: elimination of x1 

3 2 2 5 8
2 2 1 2

0 11 11 44 11
3 4 1 3

0 11 11 44 11

Row Row Row

Row Row Row

− 
−  → 

−
  −  →
 − − − 

 

2nd step: Elimination of x2 

















−

−

00000

114411110

85223

    Row3 – Row1 →  Row3 

Back substitution: Writing the matrix into the system we obtain  
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3x1 + 2x2 +   2x3  – 5x4     = 8 

       11x2 + 11x3 – 44x4 = 11 

We can divide both sides of the second equation to obtain equivalent system: 

3x1 + 2x2 +   2x3  – 5x4    = 8 

           x2 +     x3 –  4x4    = 1 

From the second equation, x2 = 1 – x3 + 4x4. From this and the first equation, we 

obtain that x1 = 2 – x4. Since x3, x4 remain arbitrary, we have infinitely many solutions, if we 

choose a value of x3 and a value of x4, then the corresponding values of x1 and x2 are 

uniquely determined. 

Example 3: What will happen if  we apply the Gauss elimination to a linear system 

that has no solution? The answer is that in this case the method will show this fact by 

producing a contradiction – for instance, consider 









=++

=++

=++

6x4x2x6

0xxx2

3xx2x3

321

321

321

 

The augmented matrix is 

















6426

0112

3123

 

→ 

















−

−
−

0220

2
3

1

3

1
0

3123

 → 

















−−

12000

2
3

1

3

1
0

3123

 

The last row correspond to the last equation which is 0 = 12. This is a contradiction 

yielding that the system has no solution. 

The form of the system and of the matrix in the last step of Gauss elimination is 

called the echelon form. Precisely, we have the following definition. 

6.2. Definition: A matrix is of echelon form if it satisfies the following conditions: 

i) All the zero rows, if any, are on the bottom of the matrix 

ii) In the nonzero row, each leading nonzero entry is to the right of the leading 

nonzero entry in the preceding row. 



Nguyen Thieu Huy, Lecture on Algebra 

  39 

 Correspondingly, A system is called an echelon system if its augmented matrix is an 

echelon matrix. 

Example: A = 

















 −−

00000

87000

75120

54321

 is an echelon matrix 

6.3. Note on Gauss elimination: At the end of the Gauss elimination (before the back 

substitution) the reduced system will have the echelon form: 

a11x1 + a12x2 + … + a1nxn           = b1 

                       

00

00

~
0

~~...~

~~...~

1

222 22

=

=

=

=++

=++

+





r

rnrnjrj

nnjj

b

bxaxa

bxaxa

rr

 

where r  m; 1 < j2 < … < jr and a11  0; .0~,...,0~
22 

rrjj aa  

From this, there are three possibilities in which the system has 

a) no solution if r < m and the number 1

~
+rb  is not zero (see example 3) 

b) precisely one solution if r = n and 1

~
+rb , if present, is zero (see example 1) 

c) infinitely many solution if r < n  and 1

~
+rb , if present, is zero.   

    Then, the solutions are obtained as follows: 

          +)  First, determine the so–called free variables which are the unknowns that  

           are not leading in any equations (i.e, xk is free variable  xk {x1, 
rjj xx ...,

2
} 

          +) Then, assign arbitrary values for free variables and compute the remain                

              unknowns x1, 
rjj xx ,...,

2
 by back substitution (see example 2). 

6.4. Elementary row operations: 
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To justify the Gauss elimination as a method of solving linear systems, we first 

introduce the two related concepts. 

 

Elementary operations for equations: 

         1. Interchange of two equations 

         2. Multiplication of an equation by a nonzero constant 

         3. Addition of a constant multiple of one equation to another equation. 

To these correspond the following 

Elementary row operations of matrices: 

           1. Interchange of two rows (denoted by Ri   Rj) 

           2. Multiplication of a row by a nonzero constant: (kRi → Ri) 

           3. Addition of a constant multiple of one row to another row 

                                                           (Ri + kRj → Ri) 

So, the Gauss elimination consists of these operations for pivoting and getting zero. 

6.5. Definition: A system of linear equations S1 is said to be row equivalent to a 

system of linear equations S2 if S1 can be obtained from S2 by (finitely many) elementary 

row operations. 

Clearly, the system produced by the Gauss elimination at the end is row equivalent to 

the original system to be solved. Hence, the desired justification of the Gauss elimination as 

a solution method now follows from the subsequent theorem, which implies that the Gauss 

elimination yields all solutions of the original system. 

6.6. Theorem: Row equivalent systems of linear equations have the same sets of 

solutions. 

Proof: The interchange of two equations does not alter the solution set. Neither 

does the multiplication of the new equation a nonzero constant c, because multiplication of 

the new equation by 1/c produces the original equation. Similarly for the addition of an 

equation Ei to an equation Ej, since by adding -Ei to the equation resulting from the 

addition we get back the original equation. 
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Chapter 5: Vector spaces 

I. Basic concepts 

1.1. Definition: Let K be a field (e.g., K = R or C), V be nonempty set. We endow 

two operations as follows. 

Vector addition        +:     V x V → V 

         (u, v) u + v 

Scalar multiplication  :     K x V → V 

          (, v) v 

Then, V is called a vector space over K if the following axioms hold. 

1) (u + v) + w = u + (v + w) for all u, v, w V 

2)  u + v = v + u for all u, v  V 

3) there exists a null vector, denoted by O  V, such that u + O = u for all u, v  V. 

4) for each u  V, there is a unique vector in V denoted by  –u such that u + (-u) = O 

(written: u – u = O) 

5) (u+v) = u + v for all   K; u, v  V 

6) (+) u = u + u for all ,   K; u V 

7) (u) = ()u for all ,   K; u  V 

8) 1.u = u for all u V where 1 is the identity element of K. 

Remarks:  

1. Elements of V are called vectors. 

2. The axioms (1)– (4) say that (V, +) is a commutative group. 

1.2. Examples:  

1. Consider R3 = {(x, y, z)x, y, z  R} with the vector addition and scalar 

multiplication defined as usual: 

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2) 

(x, y, z) = (x, y, z) ;   R. 
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Thinking of R3 as the coordinators of vectors in the usual space, then the axioms (1) 

– (8) are obvious as we already knew in high schools. Then R3 is a vector space over R with 

the null vector is O = (0,0,0). 

2. Similarly, consider Rn = {(x1, x2,…,xn)xi R i = 1, 2…n} with the vector 

addition and scalar multiplication defined as 

(x1, x2,….xn) + (y1, y2,…yn) = (x1 + y1, x2 + y2, ..., xn + yn) 

(x1, x2,..., xn) = (x1, x2...., xn) ;   R. It is easy to check that all the axioms (1)-

(8) hold true. Then Rn is a vector space over R. The null vector is O = (0,0,…,0). 

3. Let Mmxn (R) be the set of all mxn matrices with real entries. We consider the 

matrix addition and scalar multiplication defined as in Chapter 4.II. Then, the properties 2.4 

in Chapter 4 show that Mmxn (R) is a vector space over R. The null vector is the zero matrix 

O. 

4. Let P[x] be the set of all polynomials with real coefficients. That is, P[x] = {a0 + 

a1x + … + anx
na0, a1,…,an  R; n = 0, 1, 2…}. Then P[x] in a vector space over R with 

respect to the usual operations of addition of polynomials and multiplication of a polynomial 

by a real number. 

1.3. Properties: Let V be a vector space over K, ,  K, x, y V. Then, the 

following assertion hold: 

1.  x = O  




=

=

Ox

0
 

2. (-)x = x - x 

3. (x – y) = x - y 

4. (-)x = - x 

Proof:  

1. “”: Let  = 0, then 0x = (0+0)x = 0x + 0x 

Using cancellation law in group (V, +) we obtain: 0x = O. 

Let x = O, then O = (O +O) = O + O. Again, by cancellation law, we have that O = O.  

     “”: Let x = O and 0.  
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Then -1; multiplying -1 we obtain that -1(x) = -1O = O  (-1)x = 0  1x = O 

 x = O. 

2. x = (-+)x = (-)x + x 

Therefore, adding both sides to - x we obtain that  x - x = (-)x 

The assertions (3),  (4) can be proved by the similar ways. 

II. Subspaces 

2.1. Definition: Let W be a subset of a vector space V over K. Then, W is called a 

subspace of V if and only if W is itself a vector space over K with respect to the operations 

of vector addition and scalar multiplication on V. 

The following theorem provides a simpler criterion for a subset W of V to be a 

subspace of V. 

2.2. Theorem: Let W be a subset of a vector space V over K. Then W is a subspace 

of V if and only if the following conditions hold. 

1. OW (where O is the null element of V) 

2. W is closed under the vector addition, that is u,vW  u + v W 

3. W is closed under the scalar multiplication, that is  u W,  K u  W 

Proof: “” let W  V be a subspace of V. Since W is a vector space over K, the 

conditions (2) and (3) are clearly true. Since (W,+) is a group, w  .  Therefore, x  W. 

Then, 0x = O W.  

“”: This implication is obvious: Since V is already a vector space over K and W  

V, to prove that W is a vector space over K what we need is the fact that the vector addition 

and scalar multiplication are also the operation on W, and the null element belong to W. 

They are precisely (1); (2) and (3). 

2.3. Corollary: Let W be a subset of a vector space V over K. Then, W is a subspace 

of V if and only if the following conditions hold: 

     (i) OW 

     (ii) for all a, b K and all u, v W we have that au+bvW. 
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Examples: 1. Let O be a null element of a vector space V is then {O} is a subspace 

of V. 

2. Let V = R3; M = {x, y, 0)x,yR} is a subspace of R3, because,  (0,0,0) M and 

for (x1,y10) and (x2,y2,0) in M we have that (x1, y1,0) + (x2,y2,0) = (x1 + x2, y1 + 2, 0) 

 M R. 

3. Let V = Mnx1(R); and A Mmxn(R). Consider M = {X Mnx1(R)AX = 0}. For X1, 

X2 M, it follows that A(X1 + X2) = AX1 + AX2 = O + O = O. Therefore, X1 + X2  

M. Hence M is a subspace of Mnx1(R). 

III. Linear combinations, linear spans 

3.1 Definition: Let V be a vector space over K and let v1, v2…,vn V. Then, any 

vector in V of the form 1v1 + 2v2 + …+nvn for 1,2…n R, is called a linear 

combination of v1, v2…,vn. The set of all such linear combinations is denoted by  

Span{v1, v2…vn} and is called the linear span of v1, v2…vn.  

That is, Span {v1, v2…vn} = {1v1 + 2v2 + ….+ nvni K i = 1,2,…n} 

3.2. Theorem: Let S be a subset of a vector space V. Then, the following assertions 

hold:  

i) The Span S is a subspace of V which contains S. 

ii) If W is a subspace of V containing S, then Span S  W. 

3.3. Definition: Given a vector space V, the set of vectors {u1, u2....ur} are said to 

span V  if V = Span {u1, u2.., un}. Also, if the set {u1, u2....ur} spans V, then we call it  a 

spanning set of V. 

Examples:  

1. S = {(1, 0, 0); (0, 1, 0)} R3.  

Then, span S = {x(1, 0, 0) + y(0, 1, 0)x,y R} = {(x,y,0)x,y R}. 

2. S = {(1,0,0), (0,1,0), (0,0,1)} R3. Then, 

Span S = {x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)x,y,z R} 

 = {(x, y, t)x, y, z R} = R3 

Hence, S = {(1, 0, 0) ; (0, 1, 0) ; (0, 0, 1)} is a spanning set of R3 
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IV. Linear dependence and independence 

4.1. Definition: Let V be a vector space over K. The vectors v1, v2…vm V are said 

to be linearly dependent if there exist scalars 1, 2, …,m belonging to K, not all zero, such 

that 

1v1 + 2v2 + ….+ mvm = O.                         (4.1) 

Otherwise, the vectors v1, v2…, vm are said to be linear independent. 

We observe that (4.1) always holds if 1 = 2 = ...=m = 0. If (4.1) holds only in this 

case, that is, 

1v1 + 2v2 + ….+ mvm = O  1 = 2 = ...=m = 0, 

then the vectors v1, v2…vm are linearly independent. 

If (4.1) also holds when one of 1, 2 , …,m  is not zero, then the vectors v1, v2…vm 

are linearly dependent. 

If the vectors v1, v2…vm are linearly independent; we say that the set {v1, v2…vm} is 

linearly independent. Otherwise, the set {v1, v2…vm} is said to be linearly dependent. 

Examples:  

1) u = (1,-1,0); v=(1, 3, - 1); w = (5, 3, -2) are linearly dependent since 3u + 2v – w = 

(0, 0, 0). The first two vectors u and v are linearly independent since: 

1u + 2v = (0, 0, 0)  (1+2, -1 + 32, - 2) = (0, 0, 0) 

 1 = 2 = 0. 

2) u = (6, 2, 3, 4); v = (0, 5, - 3, 1); w = (0, 0, 7, - 2) are linearly independent since 

x(6, 2, 3, 4) + y(0, 5, - 3, 1) + z(0, 0, 7, -2) = (0, 0, 0) 

 (6x – 2x + 5y; 3x – 3y + 7z; 4x + y – 2z) = (0, 0, 0) 

 0zyx

0z2yx4

0y5x2

0x6

===









=−+

=+

=

 

4.2. Remarks: (1) If the set of vectors S = {v1…,vm} contains O, say v1 = O, then S is 

linearly dependent. Indeed, we have that 1.v1 + 0.v2 + …+ 0.vm = 1.O + O + ….+ O = O 

(2) Let v V. Then v is linear independent if and only if v  O. 
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(3) If S = {v1,…, vm} is linear independent, then every subset T of S is also linear 

independent. In fact, let T = {vk1, vk2,…vkn} where {k1, k2,…kn}  {1, 2…m}. Take a linear 

combination k1vk1 + … + knvkn=O. Then, we have that 

k1vk1 + … + knvkn + 
 }...,}\{..,2,1{ 21

.0
nkkkmi

iv  = 0 

This yields that k1 = k2 = … = kn = 0 since S in linearly independent. Therefore, T 

is linearly independent. 

Alternatively, if S contains a linearly dependent subset, then S is also linearly dependent. 

(4)  S = {v1; … vm} is linearly dependent if and only if there exists a vector vk S 

such that vk is a linear combination of the rest vectors of S. 

Proof. “” since S is linearly dependent, there are scalars 1, 2, … m, not al 

zero, say k  0, such that. 

( )
==

−==
m

1ik
iikk

m

1i
ii vv0v  

 vk = 
=











−

m

ik

i

k

i v
1 


 

“” If there is vk  S such that vk = 
=

m

ik

iiv
1

 , then vk - 
=

=
m

ik

iiv
1

0 . Therefore, there 

exist 1, k = 1, k+1, … m not all zero (since k = 1) such that  

- 
=

=+
m

1ik
kii .0vv  

This means that S is linearly dependent. 

(5) If S ={v1,…vm} linearly independent, and x is a linear combination of S, then this 

combination is unique in the sense that, if x = 
=


m

1k
iiv = ,v'

m

1i
ii

=

  then i = i
’ i = 

1,2,…,m. 

(6) If S = {v1,…vm} is linearly independent, and y  V such that {v1, v2…vm, y} is 

linearly dependent then y is a linearly combination of S. 
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4.3. Theorem: Suppose the set S = {v1…vm}of nonzero vectors  (m 2). Then,  S is 

linearly dependent if and only if one of its vector is a linear combination of the preceding 

vectors. That is, there exists a k > 1 such that vk = 1v1 + 2v2 + …+ k-1vk-1 

Proof: “” since {v1, v2…vm} are linearly dependent, we have that there exist 

scalars a1, a2…, am, not all zero, such that 0va
m

1i
ii =

=

. Let k be the largest integer such that 

ak  0. Then if k > 1, vk = 1k
k

1k
1

k

1 v
a

a
...v

a

a
−

−−−  

If k = 1  v1 = 0 since a2 = a3 = … = am = 0. This is a contradiction because v1  0. 

“”: This implication follows from Remark 4.2 (4). 

An immediate consequence of this theorem is the following. 

4.4. Corollary: The nonzero rows of an echelon matrix are linearly independent. 

Example: 























−

−

000000

100000

110000

252100

423210

   

Then u1, u2, u3, u4 are linearly independent because we can not express any vector uk 

(k2) as a linear combination of the preceding vectors. 

V. Bases and dimension 

5.1. Definition: A set S = {v1, v2…vn} in a vector space V is called a basis of V if the 

following two conditions hold. 

(1) S is linearly independent 

(2) S is a spanning set of V. 

The following proposition gives a characterization of a basis of a vector space 

5.2. Proposition: Let V be a vector space over K, and S = {v1…., vn} be a subset of 

V. Then, the following assertions are equivalent: 

i) S is a basis of V 

u1 

u2 

u3 

u4 
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ii) u V, u can be uniquely written as a linear combination of S. 

Proof: (i)  (ii). Since S is a Spanning set of V, we have that uV, u can be 

written as a linear combination of S. The uniqueness of such an expression follows from the 

linear independence of S. 

(ii)  (i): The assertion (ii) implies that span S = V. Let now 1,…,n K such that 

1v1 + …+nvn = O. Then, since O V can be uniquely written as a linear combination of S 

and O = 0.v1 + …+ 0.v2 we obtain that 1=2 = …=n=0. This yields that S is linearly 

independent. 

Examples:  

1. V = R2; S = {(1,0); (0,1)} is a basis of R2 because S is linearly independent and 

(x,y) R2, (x,y) = x(1,0) + y(0,1)  Span S. 

2. In the same way as above, we can see that S = {(1, 0,…,0); (0, 1, 0,…,0),…(0, 0, 

…,1)} is a basis of Rn; and S is called usual basis of Rn
. 

3. Pn[x] = {a0 + a1x + …+ anx
na0...an R} is the space of polynomials with real 

coefficients and degrees  n. Then, S = {1,x,…xn} is a basis of Pn[x]. 

5.4. Definition: A vector space V is said to be of finite dimension if either V = {O} 

(trivial vector space) or V has a basis with n elements for some fixed n1. 

The following lemma and consequence show that if V is of finite dimension, then the 

number of vectors in each basis is the same. 

5.5. Lemma: Let S = {u1, u2…ur} and T = {v1, v2 ,…,vk} be subsets of vector space V 

such that T is linearly independent and every vector in T can be written as a linear 

combination of S. Then k r. 

Proof: For the purpose of contradiction let k > r  k  r +1. 

Starting from v1 we have: v1 = 1u1+2u2 + …+rur. 

Since v1 0, it follows that not all 1…,r are zero. Without loosing of generality we can 

suppose that 1 0. Then, u1 = r
1

r
2

1

2
1

1

u...uv
1




−−




−


 

For v2 we have that 
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v2 = 
===

+











−


=

r

2i
ii

r

2i
i

1

i
1

1
1

r

1i
ii uuv

1
u  

Therefore, v2 is a linear combination of {v1, u2,…,ur}. By the similar way as above, 

we can derive that  

v3 is a linear combination of {v1, v2, u3…ur}, and so on.  

Proceeding in this way, we obtain that  

vr+1 is a linear combination of {v1, v2,…vr}. 

Thus, {v1,v2…vr+1} is linearly dependent; and therefore, T is linearly dependent. This is a 

contradiction. 

5.6. Theorem: Let V be a finite–dimensional vector space; V {0}. Then every basic 

of V has the same number of elements.  

Proof: Let S = {u1…,un} and T = {v1…vm} be bases of V. Since T is linearly 

independent, and every vector of T is a linear combination of S, we have that mn. 

Interchanging the roll of T to S and vice versa we obtain n m. Therefore, m = n. 

5.7. Definition: Let V be a vector space of finite dimension. Then: 

1) if V = {0}, we say that V is of  null–dimension and write dim V = 0 

2) if V   {0} and S = {v1,v2….vn} is a basic of V, we say that V is of n–dimension 

and write dimV = n. 

Examples: dim(R2) = 2; dim(Rn) = n; dim(Pn[x]) = n+1. 

The following theorem is direct consequence of Lemma 5.5 and Theorem 5.6. 

5.8. Theorem: Let V be a vector space of n–dimension then the following assertions 

hold: 

1. Any subset of V containing n+1 or more vectors is linearly dependent. 

2. Any linearly independent set of vectors in V with n elements is basis of V. 

3. Any spanning set T = {v1, v2,…, vn} of V (with n elements) is a basis of V. 

Also, we have the following theorem which can be proved by the same method. 

5.9. Theorem: Let V be a vector space of n –dimension then, the following assertions 

hold. 
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(1) If S = {u1, u2,…,uk} be a linearly independent subset of V with k<n then one can 

extend S by vectors uk+1,…,un such that {u1,u2,…,un} is a basis of V. 

(2) If T is a spanning set of V, then the maximum linearly independent subset of T is 

a basis of V. 

By “maximum linearly independent subset of T” we mean the linearly independent set of 

vectors S  T such that if any vector is added to S from T we will obtain a linear dependent 

set of vectors. 

VI. Rank of matrices 

6.1. Definition: The maximum number of linearly independent row vectors of a 

matrix A = [ajk] is called the rank of A and is denoted by rank A. 

Example:  

A = 

















−

−

−

235

131

011

; rank A = 2 because the first two rows are linearly 

independent; and the three rows are linearly dependent. 

6.2. Theorem. The rank of a matrix  equals the maximum number of linearly 

independent column vectors of A. Hence, A and AT has the same rank. 

Proof: Let r be the maximum number of linearly independent row vectors of A; 

and let q be the maximum number of linearly independent column vectors of A. We will 

prove that q  r. In fact, let v(1), v(2)…,v(r) be linearly independent; and all the rest row 

vectors u(1), u(2)…u(s) of A are linear combinations of v(1); v(2)…,v(r), 

u(1) = c11v(1)+c12v(2) + …+c1rv(r) 

u(2) = c21v(1)+c22v(2) + …+ c2rv(r) 

u(s) = cs1v(1)+cs2v(2) + … + csrv(r). 

Writing  
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( )

( )

( )

( )sn2s1s)s(

n11211)1(

rn2r1r)r(

n11211(1)

u...uuu

u...uuu

v...vvv

v...vvv

=

=

=

=





 

we have that 

u1k = c11v1k+c12v2k+…+c1rvrk 

u2k = c21v1k+c22v2k+…+c2rvrk 

  

usk = cs1v1k + cs2v2k +…+ csrvrk 

for all k = 1, 2, …n. 

Therefore, 





















++





















+





















=





















sr

r2

12

rk

2s

22

12

k2

1s

21

11

k1

sk

k2

k1

c

c

c

v...

c

c

c

v

c

c

c

v

u

u

u


 

For all k = 1, 2…n. This yields that  

V = Span {column vectors of A} Span 





















































































































sr

r

ss c

c

c

c

c

c













1

2

12

1

11

1

0

0

;...0

1

0

;0

0

1

 

Hence, q = dim V  r. 

Applying this argument for AT we derive that r  q, there fore, r = q. 
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6.3. Definition: The span of row vectors of A is called row space of A. The span of 

column vectors of A is called column space of A. We denote the row space of A by  

rowsp(A) and the column space of A by colsp(A). 

From Theorem 6.2 we obtain the following corollary. 

6.4. Corollary: The row space and the column space of a matrix A have the same 

dimension which is equal to rank A. 

6.5. Remark: The elementary row operations do not alter the rank of a matrix. 

Indeed, let B be obtained from A after finitely many row operations. Then, each row of B is 

a linear combination of rows of A. This yields that rowsp(B)  rowsp(A). Note that each row 

operation can be inverted to obtain the original state. Concretely, 

+) the inverse of Ri  Rj is Rj  Ri 

+) the inverse of kRi → Ri is 
k

1
Ri → Ri, where k  0 

+) the inverse of kRi + Rj → Rj is Rj – kRi →Rj 

Therefore, A can be obtained from B after finitely many row operations. Then,  

rowsp (A)  rowsp (B). This yields that  rowsp (A) = rowsp (B). 

The above arguments also show the following theorem. 

6.6. Theorem: Row equivalent matrices have the same row spaces and then have the 

same rank. 

Note that, the rank of a echelon matrix equals the number of its non–zero rows (see 

corollary 4.4). Therefore, in practice, to calculate the rank of a matrix, we use the row 

operations to deduce it to an echelon form, then count the number of non-zero rows of this 

echelon form, this number is the rank of A. 

Example: A = 
















−−

−−

−

→−

→−−−−−−

→−

















−−

−−

−

2640

1320

1021

3

2

56103

3362

1021

313

212

RRR

RRR

 

2)(

0000

1320

1021
2 323

=
















−−

−

→−−−−−−−

→−
Arank

RRR
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From the definition of a rank of a matrix, we immediately have the following 

corollary. 

6.7. Corollary: Consider the subset S = {v1, v2,…, vk}  Rn the the following 

assertions hold. 

1. S is linearly independent if and only if the kxn matrix with row vectors v1, v2,…, 

vk has rank k. 

2. Dim spanS = rank(A), where A is the kxn matrix whose row vectors are v1, v2,…, 

vk, respectively. 

6.8. Definition: Let S be a finite subset of vector space V. Then, the number 

dim(Span S) is called the rank of S, denoted by rankS. 

Example: Consider 

S = {(1, 2, 0, - 1); (2, 6, -3, - 3); (3, 10, -6, - 5)}. Put 

A = 

















−−

−

→
















−−

−−

−

→
















−−

−−

−

0000

1320

1021

2640

1320

1021

56103

3362

1021

 

Then, rank S = dim span S = rank A =2. Also, a basis of span S can be chosen as  

{(0, 2, - 3, -1); (0, 2, -3, - 1)}. 

VII. Fundamental theorem of systems of linear equations  

7.1. Theorem: Consider the system of linear equations 

                                                            AX = B           (7.1) 

where A = (ajk) is an mxn coefficient matrix; X = 
















nx

x


1

 is the column vector of unknowns; 

and B = 





















m

2

1

b

b

b


. Let A

~
 = [AB] be the augmented matrix of the system (7.1). Then the 

system (7.1) has a solution if and only if rank A = rank A
~

. Moreover, if rankA = rank A
~

= n, 

the system has a unique solution; and if rank A = rank A
~

<n, the system has infinitely many 
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solutions with n – r free variables to which arbitrary values can be assigned. Note that, all the 

solutions can be obtained by Gauss eliminations. 

Proof: We prove the first assertion of the theorem. The second assertion follows 

straightforwardly. 

“” Denote by c1; c2…cn the column vectors of A. Since the system (7.1) has a 

solution, say x1, x2…xn we obtain that x1C1 + x2C 2 + … + xnCn = B. 

Therefore, B colsp (A)  colsp ( A
~

)  colsp (A). It is obvious that  

colsp (A) colsp ( A
~

). Thus, colsp ( A
~

) = colsp(A). Hence, rankA = rank A
~

=dim(colsp(A)). 

“” if rankA = rank A
~

, then colsp( A
~

) = colsp(A). This follows that B colspA. 

This yields that there exist x1, x2…xn such that B = x1C1 + x2C2 + … + xnCn. This means that 

system (7.1) has a solution x1, x2…, xn. 

In the case of homogeneous linear system, we have the following theorem which is a 

direct consequence of Theorem 7.1. 

7.2. Theorem: (Solutions of homogeneous systems of linear equations) 

A homogeneous system of linear equations 

AX = O    (7.2) 

always has a trivial solution x1 = 0; x2 = 0…, xn = 0. Nontrivial solutions exist if and only if r 

= rankA < n. The solution vectors of (7.2) form a vector space of dimension n – r; it is a 

subspace of Mnx1(R). 

7.3. Definition: Let A be a real matrix of the size mxn (A  Mmxn(R)). Then, the 

vectors space of all solution vectors of the homogeneous system (7.2) is called the null space 

of the matrix A, denoted by nullA. That is, nullA = {X  Mnx1(R)AX = O}, then the 

dimension of nullA is called nullity of A. 

Note that it is easy to check that nullA is a subspace of Mnx1(R) because, 

+) O nullA (since AO =O) 

+) ,  R and X1, X2 null A, we have that A(X1 + X2) = AX1+AX2 = O + 

+O = 0. there fore, X1 + X2  nullA. 

Note also that nullity of A equals n – rank A. 
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We now observe that, if X1, X2 are solutions of the nonhomogeneous system AX = B, then 

A(X1 – X2) = AX1 – AX2 = B – B = 0. 

Therefore, X1 – X2 is a solution of the homogeneous system  

AX = O. 

This observation leads to the following theorem. 

7.4. Theorem: Let X0 be a fixed solution of the nonhomogeneous system (7.1). Then, 

all the solutions of the nonhomogeneous system (7.1) are of the form 

X = X0 + Xh 

where Xh is a solution of the corresponding homogeneous system (7.2). 

VIII. Inverse of a matrix 

8.1. Definition: Let A be a n-square matrix. Then, A is said to be invertible (or 

nonsingular) if the exists an nxn matrix B such that BA = AB = In. Then, B is called the 

inverse of A; denoted by B =  A-1. 

Remark: If A is invertible, then the inverse of A is unique. Indeed, let B and C be 

inverses of A. Then, B = BI = BAC = IC = C. 

8.2. Theorem (Existence of the inverse): 

The inverse A-1 of an nxn matrix exists if and only if rankA = n. 

Therefore, A is nonsingular  rank A = n. 

Proof: Let A be nonsingular. We consider the system 

                              AX = H                                                             (8.1) 

It is equivalent to A-1AX = A-1H IX = A-1H  X = A-1H, therefore, (8.1) has a 

unique solution X = A-1H for any HMnx1 (R). This yields that Rank A = n. 

Conversely, let rankA = n. Then, for any b  Mnx1 (R), the system Ax = b always has 

a unique solution x; and the Gauss elimination shows that each component xj of x is a linear 

combination of those of b. So that we can write x = Bb where B depends only on A. Then, 

Ax = ABb = b for any b Mnx1 (R). 
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Taking now 





























































1

0

0

...;;

0

1

0

;

0

0

1




 as b, from ABb  = b we obtain that AB = I. 

Similarly, x = Bb = BAx for any x  Mnx1(R). This also yield BA = I. Therefore,  

AB = BA = I. This means that A is invertible and A-1 = B. 

Remark: Let A, B be n-square matrices. Then, AB = I if and only if BA = I. 

Therefore, we have to check only one of the two equations AB = I or BA = I to conclude B = 

A-1, also A=B-1.  

Proof: Let AB = I. Obviously, Null (BTAT)  Null (AT)  

Therefore, nullity of BTAT  nullity of AT. Hence,  

n – rank (BTAT)  n  - rank (AT)     rank A = rank AT  rank (BTAT) = rank I = n. 

Thus, rank A = n; and A is invertible. 

Now, we have that B = IB = A-1AB = A-1I = A-1. 

8.3. Determination of the inverse (Gauss – Jordan method): 

1) Gauss – Jordan method (a variation of Gauss elimination): Consider an nxn 

matrix with rank A = n. Using A we form n systems:  

AX(1) = e(1); AX(2) = e(2)…AX(n) =e(n) where e(j) has the jth component 1 and other 

components 0. Introducing the nxn matrix X = [x(1), x(2),…x(n)] and I = [e(1), e(2)…e(n)] (unit 

matrix). We combine the n systems into a single system AX = I, and the n augmented matrix 

A
~

 = [AI]. Now, AX= I implies X = A-1I = A-1 and to solve AX = I for X we can apply the 

Gauss elimination to A
~

=[A  I] to get [U H], where U is upper triangle since Gauss 

elimination triangularized systems. The Gauss – Jordan elimination now operates on [UH], 

and, by eliminating the entries in U above the main diagonal, reduces it to [I K] the 

augmented matrix of the system IX = A-1. Hence, we must have K = A-1 and can then read 

off A-1 at the end. 

2) The algorithm of Gauss – Jordan method to determine A-1 

Step1: Construct the augmented matrix [AI] 
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Step2: Using row elementary operations on [A I] to reduce A to the unit matrix. 

Then, the obtained square matrix on the right will be A-1. 

Step3: Read off the inverse A-1. 

Examples:  

1. A = 








12

35
 

[AI] = 













→









1012

0
5

1

5

3
1

1012

0135







→

















−− 1
5

2

5

1
0

0
5

1

5

3
1




 

→ 














− 5210

0
5

1

5

3
1




 → 









−

−
=









−

− −

52

31
A

5210

3101 1




 

2. A =  
















−=

















−

100814

010312

001201

IA;

814

312

201







  

















−−

−

→−

⎯→⎯

→−

















−−

−−−

⎯→⎯

→+

















−

−−−

→−

⎯→⎯

→−

116100

012110

001201

)1(

)1(

116100

012110

001201

104010

012110

001201

4

2

33

22

323

313

212













RR

RR

RRR

RRR

RRR

 

















−−

−

−

→−

⎯→⎯

→−

116100

104010

02211001

2 131

232







RRR

RRR

 

8.4. Remarks: 

1.(A-1)-1 = A. 

2. If A, B are nonsingular nxn matrices, then AB is a nonsingular and  

(AB)-1 = B-1A-1. 

3. Denote by GL(Rn) the set of all invertible matrices of the size nxn. Then, 
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(GL(Rn), •) is a group. Also, we have the cancellation law: AB = AC; A GL(Rn) B = C. 

IX. Determinants 

9.1. Definitions: Let A be an nxn square matrix. Then, a determinant of order n is a 

number associated with A  = [ajk], which is written as D = det A = A

aaa

aaa

aaa

nnnn

n

n

=

...

...

...

21

22221

11211


 

and defined inductively by 

for n = 1; A = [a11]; D = det A = a11 

for n = 2; A = 








2221

1211

aa

aa
; D = det A = 

2221

1211

aa

aa
 = a11a22 – a12a21 

for n  2; A = [ajk]; D = (-1)1+1a11M11+(-1)1+2a12M12+...+(-1)1+na1nM1n 

where M1k; 1  k  n, is a determinant of order n – 1, namely, the determinant of the 

submatrix of A, obtained from A by deleting the first row and the kth column. 

Example: 
10

11
2

20

31
1

21

31
1

210

311

211

+−=  = -1-2+2 = -1 

To compute the determinant of higher order, we need some more subtle properties of 

determinants. 

9.2. Properties: 

1. If any two rows of a determinant are interchanged, then the value of the 

determinant is multiplied by (-1). 

2. A determinant having two identical rows is equal to 0. 

3. We can compute a determinant by expanding any row, say row j, and the formula 

is 

Det A = 
=

+−
n

k

jkjk

kj Ma
1

)1(  

where Mjk (a  k  n) is a determinant of order n – 1, namely, the determinant of the 

submatrix of A, obtained from A by deleting the jth row and the kth column. 
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Example: 21
12

21
0

42

11
0

42

11
0

41

12
3

412

003

121

−=−++−=  

4. If all the entries in a row of a determinant are multiplied by the same factor , then 

the value of the new determinant is  times the value of the given determinant. 

Example: ( ) 306.5

5331

121

721

5

531

2121

35105

−=−==  

5. If corresponding entries in two rows of a determinant are proportional, the value of 

determinant is zero. 

Example: 0

931

1442

35105

=  sine the first two rows are proportional. 

6. If each entry in a row is expressed as a binomial, then the determinant can be 

written as the sum of the two corresponding determinants. Concretely, 

nn2n1n

n22221

'
n1

'
12

'
11

nn2n1n

n22221

n11211

nn2n1n

n22221

'
n1n1

'
1212

'
1111

a...aa

a...aa

a...aa

a...aa

a...aa

a...aa

a...aa

a...aa

aa...aaaa


+=

+++

 

7. The value of a determinant is left unchanged if the entries in a row are altered by 

adding them any constant multiple of the corresponding entries in any other row. 

8. The value of a determinant is not altered if its rows are written as columns in the 

same order. In other words, det A = det AT. 

Note: From (8) we have that, the properties (1) – (7) still hold if we replace rows by 

columns, respectively. 

9. The determinant of a triangular matrix is the multiplication of all entries in the 

main diagonal. 

10. Det (AB) = det(A).det(B); and thus det(A-1) = 
Adet

1
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Remark: The properties (1); (4); (7) and (9) allow to use the elementary row 

operations to deduce the determinant to the triangular form, then multiply the entries on the 

main diagonal to obtain the value of the determinant. 

Example:  

16

1600

210

721

1810

210

721

3

5

353

37115

721
323

313

212

−=

−
⎯→⎯

→+

−−→−

⎯→⎯

→−
RRR

RRR

RRR

 

X. Determinant and inverse of a matrix, Cramer’s rule 

10.1. Definition: Let A = [ajk] be an nxn matrix, and let Mjk be a determinant of order 

n – 1, obtained from D = det A by deleting the jth row and kth column of A. Then, Mjk is 

called the minor of ajk in D. Also, the number Ajk=(-1)j+k Mjk is called the cofactor of ajk in D. 

Then, the matrix C = [Aij] is called the cofactor matrix of A. 

10.2 Theorem: The inverse matrix of the nonsingular square matrix A = [ajk]  is 

given by 

A-1 = 
Adet

1
CT = 

Adet

1
[Ajk]

T = 

11 21 1

12 22 2

1 2

...

...1

det

...

n

n

n n nn

A A A

A A A

A

A A A

 
 
 
 
 
 

 

where Ajk occupies the same place as akj (not ajk) does in A. 

PRoof: Denote by AB = [gkl] where B = 
Adet

1
[Ajk]

T. 

Then, we have that gkl = 
=

n

1s

ls
ks

Adet

A
a . 

Clearly, if k = l, gkk = 
=

+ ==−
n

s

ks

ks

sk

A

A

A

M
a

1

1
det

det

det
)1( . 

If k l; gkl = 
Adet

Adet

Adet

M
a)1( kls

n

1J
ks

sl =−
=

+
 

where Ak is obtained from A by replacing lth row by kth row. Since Ak has two identical row, 

we have that det Ak = 0. Therefore, gkl = 0 if k l. Thus, AB = I. Hence, B = A-1. 
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10.3. Definition: Let A be an mxn matrix. We call a submatrix of A a matrix 

obtained from A by omitting some rows or some columns  or both. 

10.4. Theorem: An mxn matrix A = [ajk] has rank r  1 if and only if A has an rxr 

submatrix with nonzero determinant, whereas the determinant of every square submatrix of  

r + 1 or more rows is zero. 

In particular, for an nxn matrix A, we have that rank A = n  det A 0  A-1(that 

mean that A is nonsingular). 

10.5. Cramer’s theorem (solution by determinant): 

Consider the linear system AX = B where the coefficient matrix  A is of the size nxn. 

If  D = det A  0, then the system has precisely one solution X= 

















nx

x


1

given by the 

formula                                        x1 = 
D

D
x

D

D
x

D

D n

n == ;...;; 2
2

1       (Cramer’s rule) 

where Dk is the determinant obtained from D by replacing in D the kth column by the column 

vector B. 

Proof: Since rank A = rank A
~

 = n, we have that the system has a  unique solution 

(x1,..., xn). Let C1, C2, ... Cn be columns of A, so A = [C1 C2...Cn]; 

Putting Ak = [ C1...Ck-1    B Ck+1 ... Cn] we have that Dk=det Ak 

Since (x1,x2,..., xn) is the solution of AX = B, we have that  

B =   
=

+−

=

=
n

i

kik

n

i

ikii CCCCxACx
1

111

1

...detdet  

= xk det A (note that, if i  k, det ([C1...Ck-1    Ci Ck+1 ... Cn] = 0) 

Therefore, xk = 
D

D

A

A kk =
det

det
 for all k=1,2,…,n. 

 

Note: Cramer’s rule is not practical in computations but it is of theoretical interest in 

differential equations and other theories that have engineering applications. 
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XI. Coordinates in vector spaces 

11.1. Definition: Let V be an n–dimensional vector space over K, and S = {e1,..., en} 

be its basis. Then, as in seen in sections  IV, V, it is known that any vector v V can be 

uniquely expressed as a linear combination of the basis vectors in S, that is to say: there 

exists a unique  (a1,a2,...an) Kn such that v = 
=

n

1i
iiea . 

Then, n scalars a1, a2,..., an are called coordinates of v with respect to the basis S. 

Denote by [v]S = 





















n

2

1

a

a

a


 and call it the coordinate vector of v. We also denote by  

(v)S=(a1 a2 ... an) and call it the row vector of  coordinates of v. 

 

Examples:  

1) v = (6,4,3) R3; S = {(1,0,0); (0,1,0); (0,0,1)}- the usual basis of R3. Then,  

[v]S = ( ) ( ) ( )1,0,030,1,040,0,16

3

4

6

++=
















v  

If we take other basis  = {(1,0,0); (1,1,0); (1,1,1)} then   

[v] = 

















1

3

2

 since v = 2(1,0,0) + 3(1,1,0) + 1 (1,1,1). 

2. Let V = P2[t]; S = {1, t-1; (t-1)2} and v = 2t2 – 5t + 6. To find [v]S we let  

[v]S = 






















. Then, v = 2t2-5t+6=  .1+ (t-1)+ (t-1)2 for all t. 

Therefore, we easily obtain  = 3;  = - 1;  = 2. This  yields [v]S = 

















−

2

1

3
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11.2. Change of bases: 

Definition: Let V be vector space and U = { u1, u2..., un}; and  S = {v1,v2,...v3} be 

two bases of V. Then, since U is a basis of V, we can express: 

v1 = a11u1 + a21u2+...+an1un 

v2 = a12u1 + a22u2+...+an2un 

                   

vn = a1nu1 + a2nu2+...+annun 

Then, the matrix P = 





















nnnn

n

n

aaa

aaa

aaa

...

...

...

21

22221

11211


 is called the change-of-basis matrix from U 

to S. 

Example: Consider R3 and U = {(1,0,0), (0,1,0);(0,0,1)}- the usual basis;  

S = {(1,0,0), (1,1,0);(1,1,1)}- the other basis of R3. Then, we have the expression 

(1,0,0) = 1 (1,0,0) + 0 (0,1,0) + 0 (0,0,1) 

(1,1,0) = 1 (1,0,0) + 1 (0,1,0) + 0 (0,0,1) 

(1,1,1) = 1 (1,0,0) + 1 (0,1,0) + 1 (0,0,1) 

This mean that the change-of-basis matrix from U to S is  

P = 

















100

110

111

. 

Theorem: Let V be an n–dimensional vector space over K; and U, S be bases of V, 

and P be the change-of-basis matrix from U to S. then,  

[v]U = P[v]S for all v  V. 

Proof. Set U = {u1, u2,... un}, S = {v1, v2..., vn}, P = [ajk]. By the definition of P, we 

obtain that 

v =  
= ======









===

n

k

k

n

i

kii

n

k

kkii

n

i

n

k

kki

n

i

i

n

i

ii uauauav
1 111111

  
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Let [v]U = .
2

1





















n






 Then v = 

=


n

1k
kku  Therefore, k = 

=


n

1i
ikia   k = 1,2,...n 

This yields that [v]U = P[v]S. 

Remark: Let  U, S be bases of vector space V of n–dimension, and P be the change-

of-basis matrix from U to S. Then, since S is linearly independent, it follows that rank P = 

rank S = n. Hence, P is nonsingular. It is straightforward to see that P-1 is the change-of-basis 

matrix from S to U. 
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Chapter 6: Linear Mappings and Transformations 

I. Basic definitions 

1.1. Definition: Let V and W be two vector spaces over the same field K (say R or 

C). A mapping F: V  → W is called a linear mapping (or vector space homomorphism) if it 

satisfies the following conditions: 

1) For any u, v V, F(u+v) = F(u)+ F(v) 

2) For all k  K; and v V, F (kv) = k F(v) 

In other words; F: V → W is linear if it preserves the two basic operations of vector 

spaces, that of vector addition and that of scalar multiplication. 

Remark: 1) The two conditions (1) and (2) in above definition are equivalent to: 

“ ,   K,  u,v  V  F(u + v) = F(u) + F(v)” 

2) Taking k = 0 in condition (2) we have that F(Ov) = Ow for a linear mapping  

F: V → W. 

1.2. Examples: 

1) Given A  Mmxn (R); Then, the mapping 

F: Mnx1 (R)  → Mmx1 (R); F(X) = AX  X Mnx1 (R) is a linear mapping because, 

a) F(X1 + X2) = A(X1 +X2) = AX1 + AX2 

       = F (X1) + F(X2)   X1, X2  Mnx1 (R) 

 b) F (X) = A(X) = AX    R and X Mnx1 (R). 

2) The projection F: R3 → R3, F(x,y,z) = (x,y,0) is a linear mapping. 

3) The translation f: R2 → R2, f(x,y) = (x+1, y +2) is not a linear mapping since f(0,0) 

= (1,2)  (0,0)  R2. 

4) The zero mapping F: V →W, F(v) = Ow   v  V is a linear mapping. 

5) The identity mapping F: V → V; F(v)= v  v  V is a linear mapping. 

6) The mapping F: R3 → R2; F(x,y,z) = (2x + y +z, x -  4y – 2z) is a linear mapping 

because F ((x,y,z)+ (x1,y1,z1) )=F(x+x1, y + y1, z + z1) =  
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=(2(x +x1)+y+y1+z+z1, 4(x+x1) – 2 (y+y1) – (z + z1)) 

 = (2x + y + z, 4x-2y-z) + (2x1+y1+ z1, 4x1 – 2y1 – z1) 

= F(x,y,z) + F(x1,y1,z1), R and (x,y,z) R3, (x1,y1,z1) R3 

The following theorem say that, for finite–dimensional vector spaces, a linear 

mapping is completely determined by the images of the elements of a basis. 

1.3. Theorem: Let V and W be vector spaces of finite – dimension, let {v1, v2,…, vn } 

be a basis of V and let u1,u2,..., un be any n vectors in W. Then, there exists a unique linear 

mapping F: V → W such that F(v1) = u1; F(v2) = u2,..., F(vn) = un.  

Proof. We put F: V →W by 

F(v) = 
=


n

1i
iiu  for v= .

1

Vv
n

i

ii 
=

  Since for each v  V there exists a unique 

 (1,... n)  Kn such that v = 
=


n

1i
iiv . This follows that F is a mapping satisfying F(v1) = u1; 

F(v2) = u2,..., F(vn) = un. The linearity of F follows easily from the definition. We now prove 

the uniqueness. Let G be another linear mapping such that G(vi) = ui i= 1, 2,...,n. Then, for 

each v = Vv
n

1i
ii 

=

 we have that. 

G(v) = G( 
=


n

1i
iiv ) = )v(Fu)v(G

n

1i
ii

n

1i
ii

n

1i
ii 

===

==  =  

F )v(Fv
n

1i
ii =









=

. 

This yields that G = F. 

1.4. Definition: Two vector spaces V and W over K are said to be isomorphic if there 

exists a bijective linear mapping F: V → W. The mapping F is then called an isomorphism 

between V and W; and we denote by V  W. 

 

Example: Let V be a vector space of n–dimension over K,  and S be a basis of V.  
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Then, the mapping F: V → Kn 

                                   v    (v1,v2, ....vn), where v1,v2, ....vn is coordinators of v with respect 

to S,  is an isomorphism between V and Kn. Therefore, V  Kn. 

II. Kernels and Images 

2.1. Definition: Let F: V → W be a linear mapping. The image of F is the set  

F(V) = F (v) v V . It can also be expressed as  

F(V) = uW v  V such that F(v) = u; and we denote by Im F = F(V). 

2.2. Definition: The kernel of a linear mapping F: V → W, written by Ker F, is the 

set of all elements of V which map into O W (null vector of W). That is,  

Ker F = vVF(v) = O = F-1(O) 

2.3. Theorem: Let F: V → W be a linear mapping. Then, the image ImF of W is a 

subspace of W; and the kernel Ker F of F is a subspace of V. 

Proof: Since F is a linear mapping, we obtain that F(O) = O. 

Therefore, O  Im F. Moreover, for  ,   K and u, w Im F we have that there 

exist v, v’ V such that F(v) = u; F(v’) = w. Therefore,  

u + w = f(v) + F(v’) = F(v + v’). 

This yields that v + w  Im F. Hence, ImF is a subspace of W.  

Similarly, ker F is a subspace of V. 

Example: 1) Consider the projection F: R3 → R3, F(x,y,z) = (x,y,0)  (x,y,z)  R3. 

Then, Im F = F(x,y,z) (x,y,z)  R3 = (x,y,0) x,y  R. This is the plane xOy. 

Ker F = (x,y,z)  R3 F(x,y,z) = (0,0,0)  R3 = (0,0,z) z  R. This is the Oz – axis 

2) Let A  Mmxn (R), consider F: Mnx1 (R) → Mmx1 (R) defined by 

F(X) = AX  X  Mnx1 (R). 

ImF = AX  X  Mnx1 (R). To compute ImF we let C1, C2, ... Cn be columns of A, 

that is A = C1 C2 ... Cn. Then, 

Im F = x1 C1 + x2 C2 + ... + xn Cn  x1 ... xn  R 

= SpanC1, C2, ... Cn = Column space of A = Colsp (A) 
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Ker F = X  Mnx1 (R)AX = 0 = null space of A = Null A. 

Note that Null A is the solution space of homogeneous linear system AX = 0 

2.4. Theorem: Suppose that v1,v2,…vm span a vector space V and the mapping 

 F: V → W is linear. Then, F(v1), F(v2), … F(vm) span Im F. 

Proof. We have that span v1,… vm = V. Let now u  Im F.  

Then,  v  V such that u = F(v). Since span v1,…,vm = V, there exist 1 … m 

such that v= 
=


m

1i

iiv . This yields, 

U = F(v) = F( 
=


m

ii

iiv ) = 
=


m

1i

ii )v(F . 

Therefore, u  Span F(v1), F(v2).... F(vm) 

 Im F  Span F(v1),.... F(vm). 

Clearly Span F(v1), .... F(vm)  Im F. Hence, Im F = Span F(v1) .... F(vm).    q.e.d. 

2.5. Theorem: Let V be a vector space of finite – dimension, and F: V → W be a 

linear mapping. Then, 

dimV = dim Ker F + dim Im F.            (Dimension Formula) 

Proof. Let e1, e2 ,..., ek be a basis of KerF. Extend e1,…,ek   by ek+1,...,en such 

that e1,...,en is a basis of V. We now prove F(ek+1)... F(en) is a basis of Im F. Indeed, by 

Theorem 2.4, F(e1), ..., F(en) spans Im F but F(e1) = F(e2) = ... = F(ek) = 0, it follows that 

F(ek+1),..., F(en) spans ImF. We now prove F(ek+1)... F(en) is linearly independent. In 

fact,  if   k+1F(ek+1) +... + n F(en) = 0  F (k+1 ek+1 + ... + n en) = 0 

 k+1 ek+1 + ... + n en  ker F = span e1, e2, ..., ek 

Therefore, there exist 1, 2, ... k such that 
=


k

1i

iie  = 
+=


n

1kJ

JJe  

 
=

−
k

1i

ii e)( + 
+=


n

1kJ

JJe = 0. 

Since e1,e2, ..., en are linearly independent, we obtain that  
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1 = 2 = ... =  k  = k+1 = ... = n = 0. Hence, F (ek+1),..., F(en) are also linearly 

independent. Thus, F(ek+1)... F(en) is a basis of Im F. Therefore, dim Im F = n – k = n – 

dim ker F.  This follow that dim ImF + dim Ker F = n = dim V. 

2.6. Definition: Let F: V → W be a linear mapping. Then, 

1) the rank of F, denoted by rank F, is defined to be the dimension of its image. 

2) the nullity of F, denoted by null F, is defined to be the dimension of its kernel. 

That is, rank F = dim (ImF), and null F = dim (Ker F). 

Example: F: R4 →R3 

F(x,y,s,t) = (s – y + s + t, x +2s – t, x+y + 3s – 3t)   (x,y,s,t) R4 

Let find a basis and the dimension of the image and kernel of F. 

Solution: 

 Im F = spanF(1,0,0,0), F(0,1,0,0), F(0,0,1,0), F(0,0,0,1) 

                     = span(1,1,1); (-1,0,1); (1,2,3); (1. -1, -3). 

Consider 





















−

−
=

111

321

101

111

A → 





















000

000

210

111

(by elementary row operations) 

Therefore, dim ImF = rank A = 2; and a basis of Im F is 

S = (1,1,1); (0,1,2). 

Ker F is the solution space of homogeneous linear system: 









=−++

=−+

=++−

0t3s3yx

0ts2x

0tsyx

      (I) 

The dimension of ker F is easily found by the dimension formula 

dim Ker F = dim (R4) – dim ker F = 4-2 = 2 

To find a basis of ker F we have to solve the system (I), say, by Gauss elimination. 
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



















−

−

−

3311

1201

1111

 → 





















−

−

−

4220

2110

1111

 → 





















−

−

0000

2110

1111

 

Hence, (I)  




=−+

=++−

0t2sy

0tsyx
 

y = -s +2t; x = -2s – 3t for arbitrary s and t. 

This yields (x,y,s,t) = (-s +2t, -2s – 3t, s,t) 

= s(-1,-2, 1, 0)+ t(2,-3,0,1)   s,t  1 

 Ker F = span (-1,-2, 1, 0), (2,-3,0,1). Since this two vectors are linearly 

independent, we obtain a basis of  KerF as (-1,-2, 1, 0), (2,-3,0,1). 

2.7. Applications to systems of linear equations:  

Consider the homogeneous linear system AX = 0 where A  Mmxn(R) having rank A = r. Let 

F: Mnx1 (R) → Mmx1 (R) be the linear mapping defined by FX = AX  X  Mnx1 (R); and let 

N be the solution space of the system AX = 0. Then, we have that N = ker F. Therefore, 

dim N = dim KerF = dim(Mnx1(R) – dim ImF = n – dim(colsp (A)) 

= n – rankA = n – r. 

We thus have found again the property that the dimension of solution space of   

homogeneous linear system AX = 0 is equal to n – rankA, where n is the number of the 

unknowns. 

2.8. Theorem: Let F: V → W be a linear mapping. Then the following assertions 

hold. 

1) F is in injective if and only if Ker F = 0 

2) In case V and W are of finite – dimension and dim V = dim W, we have that F is 

in injective if and only if F is surjective. 

Proof: 

1) “” let F be injective. Take any x  Ker F 

Then, F(x) = O = F(O)  x = O. This yields, Ker F = O 

“”: Let Ker F = O; and x1, x2  V such that f(x1) = f(x2). Then  
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O = F(x1) – F(x2) = F(x1 – x2)  x1 – x2  ker F = O. 

 x1 – x2 = O  x1 = x2. This means that F is injective.  

2) Let dim V = dim W = n. Using the dimension formula we derive that: F is injective 

 Ker F = 0  dim Ker F = 0 

 dim Im F = n (since dim Ker F + dim Im F = n) 

 Im F =W (since dim W = n)  F is surjective. (q.e.d.) 

The following theorem gives a special example of vector space. 

2.9. Theorem: Let V and W be vector spaces over K. Denote by 

Hom (V,W)= f: V → W  f is linear. Define the vector addition and scalar 

multiplication as follows: 

 (f +g)(x) = f(x) + g(x)  f,g  Hom (V,W); x V 

 (f)(x) = f(x)    K;  f  Hom (V,W); x V 

Then, Hom (V,W) is a vector space over K. 

III. Matrices and linear mappings 

3.1. Definition. Let V and W be two vector spaces of finite dimension over K, with 

dim V = n; dim W = m. Let S = v1, v2, ...vn and U= u1, u2 ,..., um be bases of V and W, 

respectively. Suppose the mapping F: V → W is linear. Then, we can express 

F(v1) = a11 u1 +a21 u2 +... + am1um 

F(v2) = a12 u1 +a22 u2 +... + am2um 

  

F(vn) = a1n u1 +a2n u2 +... + amnum 

The transposition of the above matrix of coefficients, that is the matrix 





















mnmm

n

n

aaa

aaa

aaa

...

...

...

21

22221

11211


, 

denoted by  S

UF , is called  the matrix representation of F with respect to bases S and U (we 

write F when the bases are clearly understood) 
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Example: Consider the linear mapping F: R3 → R2; F(x,y,z) = (2x -4y +5z, x+3y-6z); and 

the two usual bases S and U of R3 and R2, respectively. Then, 

F(1,0,0) = (2,1) = 2(1,0) + 1(0,1) 

F(0,1,0) = (-4,3) = -4(1,0) + 3(0,1) 

F(0,0,1) = (5,-6) = 5(1,0) + (-6)(0,1) 

Therefore,  S

UF = 








−

−

6

5

3

4

1

2
 

3.2. Theorem: Let V and W be two vector spaces of finite dimension, F: V → W be 

linear, and S, U be bases of V and W respectively. Then, for any X  V,  

 S

UF  XS = F(X) U.                                                     (3.1) 

Proof: 

 S

UF  XS = ajk XS = 



























=

=

k

n

k

mk

k

n

k

k

xa

xa

1

1

1

  for XS = 





















nx

x

x


2

1

 

Compute now, F(X) = F 
=

n

1J

JJ )vx(  = 
=

n

1J

JJ )v(Fx  = 
==

m

1k

kkJ

n

1J

J uax  

=   
= = = =

=
m

1J

n

1k

n

1k

m

1J

kJkJkJkJ u)xa(uax . 

For  S = v1, v2, ... vn; U = u1, u2, ... um 

Therefore F(X) U = 



































=

=

=

J

m

J

mJ

J

m

J

J

J

m

J

J

xa

xa

xa

1

1

2

1

1



 =   S

UF  XS.   (q.e.d) 

Example: Return to the above example, F: R3 → R2 

F(x,y,z) = (2x-4y+5z, x+3y-6z). Then, 



Nguyen Thieu Huy, Lecture on Algebra 

  73 

F(x,y,z)U =  
6z-3yx

5z4y-2x
=









+

+









−

−

6

5

3

4

1

2









y

x
 =  S

UF  (x,y)S 

3.3. Corollary: If A is a matrix such that A XS = F(X)U for all X  V, then  

A =  S

UF . 

Note: For a linear mapping F: V → W with finite–dimensional spaces V and W. If 

we fix two bases S and U of V and W, respectively, we can replace the action of F by the 

multiplication of its matrix representation  S

UF  through equality (3.1). Moreover, the 

mapping 

: Hom (V,W) → Mmxn (R) 

              F  S

UF  

is an isomorphism. In other words, Hom(V,W)  Mmxn (K). The following theorem gives the 

relation between the matrices and the composition of mappings. 

3.4. Theorem. Let V, E, W be vector spaces of finite  dimension, and R, S, U be 

bases of V, E, W, respectively. Suppose that f: V →E and g: E →W are linear mappings then 

     R

S

S

U

R

U
o fgfg =  

3.5. Change of bases: Let V, W be vector spaces of finite–dimension, F: V → W  be 

a linear mapping; S and U be bases of V and W; S’, U’ be other bases of V and W, 

respectively. We want to find the relation bet ween  S

UF  and   '

'

S

UF . To do that, let P be the 

change–of–basis matrix from S to S’, and Q be change–of–basis matrix from U to U’, 

respectively. 

By Theorem 3.2 and Corollary 3.3, we have that. 

 S

UF  XS =  F(X)U 

XS = PXS’ and F(X)U = QF(X)U’ 

Therefore,  S

UF  XS =  S

UF  PXS’ = F(X)U= QF(X)U’ 

Hence, Q-1  SF   PXS’ = F(X)U’ for all X  V 

Therefore, by Corollary 3.3,  

  '

'

S

UF  = Q-1  S

UF  P.                                                  (3.2) 
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Example: Consider  F: R3 → R2 

F(x,y,z) = (2x-4y+z, x + 4y -5z). 

Let S, U be usual bases of R3 and R2, respectively. Then 

 S

UF  = 








−

−

5

1

3

4

1

2
 

Now, consider the basis S’ = (1,1,0); (1,-1,1); (0,1,1) of R3 and the basis U’ = 

(1,1); (-1,1) of R2. Then, the change – of – basis matrix from S to S’ is P = 
















−

110

111

011

 

and the change – of – basis matrix from U to U’ is Q = 






 −

11

11
. 

Therefore,   '

'

S

UF  = Q-1  S

UF  P = 






 −

−
=

















−








−

−







 −
−

2/1

2/5

7

0

3

1

110

111

011

5

1

3

4

1

2

11

11
1

 

IV. Eigenvalues and Eigenvectors 

Consider a field K; (K = R or C). Recall that Mn(K) is the set of all n-square matrices 

with entries belonging to K. 

4.1. Definition: Let A be an n-square matrix, A  Mn(K). A number   K is called 

an eigenvalue of A if there exists a non–zero column vector X Mnx1 (K) for which AX = 

X; and every vector satisfying this relation is then called an eigenvector of A corresponding 

to the eigenvalue . The set of all eigenvalues of A, which belong to K, is called the 

spectrum on K of A, denoted by SpKA. That is to say,  

SpKA =  K   X  Mnx1(K), X  0 such that AX = X. 

Example: A = 








−

−

22

25
  M2(R). We find the spectrum of A on R , that is SpR A. 

By definition we have that  

  SpRA  X = 

















0

0

x

x

2

1
 such that AX = X 

 The system (A - I)X = 0 has nontrivial solution X  0 
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 det (A - I)  = 0 

 
−−

−−

22

25
 = 0  2 +7+ 6 = 0 

 




−=

−=

6

1
 , therefore,  SpRA = -1, -6 

To find eigenvectors of A, we have to solve the systems  

(A - I)X = 0 for   SpRA.                (4.1) 

For   = 1 = -1: we have that  

(4.1) 







=

















+−

+−


0

0

122

215

2

1

x

x
  













=










=−

=+−

2

1

02

024
1

2

1

21

21
x

x

x

xx

xx
 

Therefore, the eigenvectors corresponding to 1 = -1 are of the form  k 








2

1
 for all k 0 

For  = 2 = -6:  (4.1)  











−
=










=+

=+

1

2

042

02
2

2

1

21

21
x

x

x

xx

xx
 

 

Therefore, the eigenvectors corresponding to 2 = -6 are of the form k 






−

1

2
 for all k 0. 

4.2. Theorem: Let A Mn(K). Then, the following assertion are equivalent. 

(i) The scalar  K is an eigenvalue of A 

(ii)  K satisfies det (A - I) = 0 

Proof: 

(i)     SpK(A) (  X 0, X Mnx1(K) such that AX = X) 

        The system (A - I)X = 0 has a nontrivial solution 

        det (A - I) = 0 (ii) 

4.3. Definition. Let A  Mn(K). Then, the polynomial  () = det (A - I) is called 

the characteristic polynomial of A and the equation   () =  0 is called characteristic 
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equation of A. Then, the set E = X  Mnx1(K) | AX = X is called the eigenspace of A 

corresponding to . 

Remark: If X is an eigenvector of A corresponding to an eigenvalue   K, so is kX 

for all k  0. Indeed, since AX = X we have that A(kX) = kAX = k(X) = (kX). Therefore, 

kX is also an eigenvector of A for all k  0.  

It is easy to see that, for    SpK(A), E is a subspace of Mnx1 (K).  

Note: For   SpK(A); the eigenspace E coincides with Null(A - I); and therefore 

dim E = n – rank (A - I) > 0. 

Examples:  For  A = 
















−−

−

−−

021

612

322

 we have that 

| A - I| = 0  -3 - 2 +21 +45 = 0 

 1 = 5; 2 = 3 = -3. Therefore, SpK(A) = 5; -3 

For  1 = 5, consider (A – 5I)X = 0 X =x1 

















− 1

2

1

 x1 

Therefore, E5 = Span
































−1

2

1

. 

For 2 = 3 = -3, solve (A+3I)X=0  X=x2 















−

0

1

2

+x3

















1

0

3

x2, x3. 

Therefore,  E(-3)=Span{















−

0

1

2

,

















1

0

3

} 

4.5. An application: Stretching of an elastic membrane 

An elastic membrane in the x1x2 plane with boundary 1xx 2
2

2
1 =+  is stretched so that 

a point P(x1,x2) goes over into the point Q(y1,y2) given by  
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Y= 















==









2

1

2

1

x

x

53

35
AX

y

y
 

Find the “principal directions”, that is, directions of the position vector X 0 of P for 

which the direction of the position vector Y of Q is the same or exactly opposite (or, in other 

words, X and Y are linearly dependent). What shape does the boundary circle take under this 

deformation? 

Solution: We are looking for X such that Y = X; X  0  

 AX = X. This means that we have to find eigenvalues and eigenvectors of A. 

Solve det (A - I) = 0  
−

−

53

35
 = 0  1 = 8, 2 =2 

For 1 = 8; E8 = Span 

















1

1
 

For 2 = 2; E2 = Span 

















−1

1
 

We choose u1 = 








1

1
; u2 = 









− 1

1
. Then, u1, u2 give the principal directions. The 

eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 

2, respectively. 
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Accordingly, if we choose the principal directions as directions of a new Cartesian 

v1,v2 – coordinate system, say, 

v1 = 








2

1
,

2

1
; v2 = 








−

2

1
,

2

1
.  

Then 







=









2

1

2

1

x

x
A

y

y
; 



























−
=









2

1

2

1

y

y

2

1

2

1
2

1

2

1

z

z
 

 



















−

+

=


































−
=









21

21

2

1

2

1

2

2

2

2
2

8

2

8

53

35

2

1

2

1
2

1

2

1

xx

xx

x

x

z

z
 

 2)xx(2
2

z

32

z 2
2

2
1

2
2

2
1 =+=+  1

4

z

64

z 2
2

2
1 =+  and we obtain a new shape as an ellipse. 

V. Diagonalizations 

5.1. Similarities: An nxn matrix B is called similar to an nxn matrix A if there is an 

nxn – nonsingular matrix T such that. 

B = T-1AT                                             (5.1) 

5.2. Theorem: If B is similar to A, then B and A have the same characteristic 

polynomial, therefore have the same set of eigenvalues. 

Proof: 

B = T-1AT  | B - I | = | T-1AT – T-1IT | 

= | T-1(A - I)T | = | T-1 |. | A- I | . | T | = | A - I | 

5.3. Lemma: Let 1; 2 ... k be distinct eigenvalues of an nxn matrix A. Then, the 

corresponding eigenvectors x1, x2, ... xk form a linearly independent set. 

Proof: Suppose that the conclusion is false. Let r be the largest integer such that 

x1; x2;...xr is linearly independent. Then, r < k and the set x1,..,xr+1 is linearly dependent. 

This means that, there are scalars C1, C2,... Cr+1 not all zero, such that. 

C1x1 + C2x2 + ...+Cr+1xr+1 = 0                 (3.3) 
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r+1 
+

=

1r

1i

iixC =  0 and A(
+

=

1r

1i

iixC ) = 0 

Then 0xC)(

0xC

0xC
r

1i

iii1r1r

1i

iii

1r

1i

ii1r

=−













=

=






=

++

=

+

=

+

 

Since x1, x2, ...xr are linearly independent, we have that (r+1 - i)Ci = 0  i = 1,2...,r it 

follows that Ci = 0 i = 1,2,...r. By (3.3), Cr+1xr+1 = 0 

Therefore Cr+1 = 0 because xr+1 0. This contradicts with the fact that not all C1,... 

Cr+1 are zero. 

5.4. Theorem: If an nxn matrix A has n distinct eigenvalues, then it has n linearly 

independent vectors. 

Note: There are nxn matrices which do not have n distinct eigenvalues but they still 

have n linearly independent eigenvectors,  e.g., 

A = 

















011

101

110

; | A - I | = (+1)2(-2) = 0  




=

−=

2

1
, 

and A has 3 linearly independent vectors u1=

















1

1

1

; u2=

















−

1

1

1

; u3=

















− 1

0

1

 

5.5. Definition: A square nxn matrix A is said to be diagonalizable if there is a 

nonsingular nxn matrix T so that T-1AT is diagonal, that is, A is similar to a diagonal matrix. 

5.6. Theorem: Let A be an nxn matrix. Then A is diagonalizable if and only if A has 

n linearly independent eigenvectors. 

Proof: If A is  diagonalizable, then T, T-1AT = 





















n













00

00

00

2

1

- a diagonal 

matrix. 

Let C1, C2,... Cn be columns of T, that is, T = C1C2... Cn. 
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Then AT = T





















n













00

00

00

2

1

 

nnn CAC

CAC

CAC






=

=

=


222

111

 

 A has n eigenvectors C1, C2,...,Cn. Obviously, C1, C2,... Cn are linearly independent 

since T is nonsingular. 

Conversely, A has n linearly independent eigenvectors C1, C2,... Cn corresponding to 

eigenvalues 1, 2,...n, respectively.  

Set T =  C1 C2 ... Cn. Clearly, AT = T





















n













00

00

00

2

1

  

Therefore T-1AT=





















n













00

00

00

2

1

 is a diagonal matrix.   (q.e.d) 

5.7. Definition: Let A be a diagonalizable matrix. Then, the process of finding of T 

such that T-1AT is a diagonal matrix, is called the diagonalization of A. 

We have the following algorithm of diagonalization of nxn matrix A. 

Step 1: Solve the characteristic equation to find all eigenvalues 1, 2,...n 

Step 2: For each i solve (A - iI)X = 0 to find all the linearly independent 

eigenvectors of A. If A has less than n linearly independent eigenvectors, then conclude that 

A can not be diagonalized. If A has n linearly independent eigenvectors, then come to next 

step. 

Step 3: Let u1, u2 ,...,un be n linearly independent eigenvectors of A found in Step 2. 

Then, set T = [u1 u2...un] (that is columns of T are u1,u2,...,un, respectively). By theorem 5.6 

we have that T-1AT = 





















n













00

00

00

2

1

 where ui is the eigenvectors corresponding to the 

eigenvalue i, i = 1,2,... n, respectively. 
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Example: A = 

















011

101

110

;  

Characteristic equation: | A - I | = (+1)2(-2) = 0  




=

−==

2

1

3

21
 

For  1= 2 = -1: Solve (A+I)X = 0 for X = 
















3

2

1

x

x

x

 we have x1+x2+x3 =0;  

There are two linearly independent eigenvectors u1 = 

















−

0

1

1

;  and u2 = 

















−1

0

1

 corresponding to 

the eigenvector -1. 

For 3 = 2, solve (A-2I)X = 0 for X = 
















3

2

1

x

x

x

 we obtain that 

























=


















=−+

=+−

=++−

1

1

1

x

x

x

x

0x2xx

0xx2x

0xxx2

1

3

2

1

321

321

321

. There is one linearly independent eigenvector 

u3 = 
















1

1

1

 corresponding to the eigenvector 3 = 2. Therefore, A has 3 linearly independent 

eigenvectors u1, u2, u3. Setting now T = 
















−

−

110

101

111

 we obtain that  

T-1AT = 
















−

−

200

010

001

 finishing the diagonalization of A. 

VI. Linear operators (transformations) 

6.1. Definition: A linear mapping F: V→ V(from V to itself) is called a linear 

operator (or transformation). 
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6.2. Definition: A linear operator F: V →V is called nonsingular if Ker F = {0}.  

By Theorem 2.8 we obtain the following results on linear operators. 

6.3. Theorem: Let V be a vector space of finite dimension and  

F: V →V be a linear operator. Then, the following assertions are equivalent. 

i) F is nonsingular. 

ii) F is injective. 

iii) F is surjective. 

iv) F is bijective. 

6.4. Linear operators and matrices: Let V a vector space of finite dimension, and  

F: V →V be a linear operator. Let S be a basis of V. Then, by definition 3.1, we can 

construct the matrix  S

SF . This matrix is called the matrix representation of F corresponding 

to S, denoted by  [F]S =  S

SF . 

By Theorem 3.2. and Corollary 3.3 we have that [F]S [x]S = [Fx]S  x  V. 

Conversely, if A is an nxn square matrix satisfying A[x]S = [Fx]S for all x  V, then 

A = [F]S. 

Example: Let F: R3 → R3 ; F(x,y,z) = (2x – 3y+z,x +5y -3z, 2x –y – 5z). Let S be the 

usual basis in R3, S = {(1,0,0); (0,1,0); (0,0,1)}. Then, [F]S = 
















−−

−

−

512

351

132

 

6.5. Change of bases: Let F: V →V be an operator where V is of n–dimension, and 

let S and U be two different bases of V. Putting A = [F]S; B = [F]U and supposing that P is 

the change–of–basis matrix from S to U, we have that  

B = P-1AP 

(this follows from the formula (3.2) in Section 3.4). Therefore, we obtain that two matrices A 

and B represent the same linear operator F if and only if they are similar. 

6.6. Eigenvectors and  eigenvalues of operators 

Similarly to square matrices, we have the following definition of eigenvectors and 

eigenvalues of an operator T: V →V where V is a vector space over K. 



Nguyen Thieu Huy, Lecture on Algebra 

  83 

Definition:  A Scalar   K is called an eigenvalue of T if there exists a nonzero 

vector v V for which T(v) = v. Then, every vector satisfying this relation is called an 

eigenvector of T corresponding to . 

The set of all eigenvalues of T in K is denoted by SpKT and is called spectral set of T 

on K. 

Example: Let  f : R2 → R2; f(x,y) = (2x+y,3y) 

  SpKf  (x,y)  (0,0) such that f(x,y) =(x,y) 

  (x,y)  (0,0) such that 




=−

=+−

0y)3(

0yx)2(
 

 the system 




=−

=+−

0y)3(

0yx)2(
 has a nontrivial solution (x,y) (0,0) 

 
−

−

30

12
 = 0  (2-)(3-)=0 

 




=

=

3

2
    SpR[f]S where [f]S = 









−

−





30

12
 is the matrix representation of 

f with respect to the usual basis S of R2. 

Since f(v) = v  [f(v)]U= [v]U [f]U[v]U= [v]U for any basis U of R2, we can easily 

obtain that   is an eigenvalue of f if and only if  is an eigenvalue of [f]U for any basis U of R2. 

Moreover, by the same arguments we can deduce the following theorem. 

6.7. Theorem. Let V be a vector space of finite dimension and  F: V →V be a linear 

operator. Then, the following assertions are equivalent. 

i)   K is an eigenvalue of F 

ii) (F -I) is a singular operator, that is, Ker (F - I) {0} 

iii)  is an eigenvalue of the matrix [F]S for any basis S of V.  

Example: Let F: R3 →R3 be defined by 

F(x,y,z) = (y+z,x+z,x+y); and S be the usual basis of R3.  

Then [F]S = 
















011

101

110

and SpRF = SpR[F]S = {-1,2} 
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Remark: Let T: V→ V be an operator on finite dimensional space V and S be a basis 

of V. Then, 

 v V is an eigenvector of T    [v]S is an eigenvector of [T]S 

This equivalence follows from the fact that [T]S[v]S = [Tv]S. 

Therefore, we can deduce the finding of eigenvectors and eigenvalues of an operator 

T to that of its matrix representation [T]S for any basis S of V. 

6.8. Diagonalization of a linear operator: 

Definition: The operator T: V→ V (where V is a finite-dimensional vector space) is 

said to be diagonalizable if there is a basis S of V such that [T]S is a diagonal matrix. The 

process of finding S is called the diagonalization of T. Since, in finite-dimensional spaces, 

we can replace the action of an operator T by that of its matrix representation, we thus have 

the following theorem whose proof is left as an excercise. 

Theorem: let V be a vector space of finite dimension with dim V =n, and T: V→ V 

be linear operator. Then, the following assertions are equivalent. 

i) T is diagonalizable. 

ii) T has n linearly independent eigenvectors. 

iii) There is a basis of V, which are consisted of n eigenvectors of T. 

Example: Let consider above example T: R3 →R3 defined by  

T(x,y,z) = (y+z,x+z,x+y) 

To diagonalize T we choose any basis of R3, say, the usual basis S. Then, we write 

[T]S = 
















011

101

110

 

The eigenvalues of T coincide with the eigenvalues of [T]S; and they are easily 

computed by solving the characteristic equation  

Det ([T]S - I) = 

−

−

−

11

11

11

 = 0  (+1)2(-2) = 0 
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Next, using the fact that v  V is a eigenvector of T if and only if [v]S is an 

eigenvector of [T]S, we have that for  = -1, we solve ([T]S - I) X = 0  ([T]S + I)X = 0 

 








=++

=++

=++

0xxx

0xxx

0xxx

321

321

321

 (for x = 
















3

2

1

x

x

x

 corresponding to v = (x1, x2, x3)) 

Therefore, there are two linearly independent eigenvectors corresponding to  = -1; 

these are v1 = (1,-1,0) and v2 = (1,0,-1). 

For   = 2, we solve ([T]S -2I)X = 0 (for x = 
















3

2

1

x

x

x

 corresponding to v = (x1,x2,x3)). 

We then have 

 








=−+

=+−

=++−

0x2xx

0xx2x

0xxx2

321

321

321

  (x1,x2,x3) = x1(1,1,1)  x1 

Thus, there is one linearly independent eigenvector corresponding to    = 2, that may 

be chosen as v3 = (1,1,1). 

Clearly, v1, v2, v3 are linearly independent and the set U = {v1,v2,v3} is a basis of R3 

for which the matrix representation [T]U is diagonal. 
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Chapter 7: Euclidean Spaces 

I. Inner product spaces 

1.1. Definition: let V be a vector space over R. Suppose to each pair of vectors u, v  

V there is assigned a real number, denoted by <u,v>. Then, we obtain a function:  

                            V x V → R 

(u,v)   <u,v> 

This function is called a real inner product on V if it satisfies the following axioms: 

(I1): < au + bw,v > = a< u,v > + b < w,v >  u,v,w  V and a,b R   (Linearity) 

(I2): < u,v > = <v, u>  u,v  V (Symmetry) 

(I3): <u,u>  0    u  V; and <u,u> = 0 if and only if u = O-the null vector of V    

                                                                                                           (Positive definite).   

The vector space V with a inner product is called a (real) Inner Product Space (we write IPS 

to stand for the phrase: “Inner Product Space”). 

Note:  

a) The axiom (I1) is equivalent to      1) < u1 +u2,v> = <u1,v> + <u2,v>  u1, u2, v V. 

                                                                       2) <ku,v> = k<u,v> u, v V 

 b) Using (I1) and (I2) we obtain that 

< u, v1+v2> = <v1 + v2, u> =  <v1,u> +<v2,u> 

=  <u,v1> + <u,v2>  ,  R and u,v1,v2 V 

Examples: Take V= Rn; let an inner product be defined by              

< (u1,u2...un), (v1,v2,...vn)> = 
=

n

1i

iivu . 

Then, we can check 

            (I1): For u = (u1,u2...un);w = (w1,w2,...wn) and v= (v1,v2,...vn), and a,b  R, we 

have 

<au +bw,v> =  
= ==

+=+
u

i

u

i

iiii

u

i

iii vwbvauvbwau
1 11

)( = a<u,v> + b<w,v> 
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I2): <u,v> = 
==

==
u

1i

ii

u

1i

ii u,vuvvw  

I3): <u,u> = 
=


u

1i

2
i 0u  and <u.u> = 0  

=

u

1i

2
iu  = 0 

 u1 = u2 =    = un = 0  u = (0,0,…,0)-null vector of Rn. 

Therefore, we obtain that <  ,  > is an inner product making Rn the IPS. This inner 

product is called usual scalar product (or dot product) on R2, and is sometimes denoted by    

u  v = <u,v>. 

2) Let C[a,b] = {f: [a,b] →R | f is continuous} be the vector space of all real, 

continuous function defined on [a,b]  R. Then, one can show that the following assignment 

<f,g>= dx)x(g.)x(f
b

a   f, g C[a,b] 

is an inner product on C[a,b] making C[a,b] an IPS. 

3) Consider Mmxn (R) – the vector space of all real matrices of the size mxn. Then, 

the following assignment 

<A,B> = Tr (ATB), where Tr ([Cij]) = 
=

n

i

iiC
1

for an n-square matrix [Cij], is an inner 

product on Mmxn (R). It is called the unual inner product on Mmxn(R).  

Specially, when n= 1 we have that the (Mmx1(R), <.,.>) is an IPS with  

<X,Y> = XTY =  
=

n

i

ii yx
1

 for X = 
















n

1

x

x

 ;  Y= 
















n

1

y

y

 . 

1.2. Remark:  1) <O,u> = 0  because <O,u> = < 0.O,u> = 0< O,u> = 0.  

                                    2) If u  O then <u,u> > 0. 

1.3. Definition: An Inner Product Space of finite dimension is called an Euclidean 

space. 

Example of Euclidean spaces: 

1)  (Rn, <  ,  >), where <  ,  >  is usual scalar product . 

2)  (Mmxn(R), <  ,  >), where <  ,  >  is usual inner product . 
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II. Length (or Norm) of vectors 

2.1. Definition: Let (V, <  ,  > ) be an IPS. For each u V we define = u,uu  

and call it the length (or norm) of u. 

We now justify this definition by proving the following properties of the length of a vector. 

2.2. Proposition. The length of vectors in V has the following properties. 

1) u   0  u  V and u  = 0  u = O. 

2) u  = | | u     R; uV. 

3) ||u+v||  ||u||+||v||   u, v   V. 

Proof. The proofs of (1) and (2)  are straightforward. We prove (3). Indeed, 

(3)  vu + 2  u 2 + v 2 + 2 u v  

       <u+v, u+v>  <u,u> +<v,v> + 2  v,vu,u  

By the linearity of the inner product the above inequality is equivalent to 

<u,u> + 2<u,v> + <v,v>  <u,u> + 2<v,v> + 2  v,vu,u  

 <u,v>   v,vu,u  

This last inequality is a consequence of the following Cauchy – Schwarz inequality 

<u,v>2  <u,u> <v,v>.                 (C-S) 

We now prove (C-S). In fact,  for all t  R we have that < tu +v, tu+v>  0 

 t2 <u,u> + 2<u,v>t  + <v,v>  0  t  R 

If u = 0, the inequality (C-S) is obvious. 

If u  0, then we have that ’  0  <u,v>2  <u,u> <v,v>  (q.e.d) 

2.3. Remarks:  

1) If u  = 1, then u is called a unit vector. 

            2) The non–negative real number d(u,v) = vu −  is called the distance between u and 

v. 
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3) For nonzero vectors u, v  V, the angle between u and v is defined to be the angle 

, 0     , such that  cos  = 
v.u

v,u 
 

4) In the space Rn with usual scalar product <.,.>  we have that the Cauchy –Schwarz  

inequality (C – S) becomes 

(x1y1 + x2y2 + ...+ xnyn)
2  22

2

2

1

22

2

2

1 ...)(...( nn yyyxxx ++++++ ) 

for x = (x1, x2,...xn) and y = (y1, y2,... yn) Rn, which is known as Bunyakovskii inequality. 

III. Orthogonality  

Throughout this section, (V, <  ,  >) is an IPS. 

3.1. Definition: the vectors u,v V are said to be orthogonal if <u,v> = 0, denoted by 

u ⊥ v (we also say that u is orthogonal to v). 

Note: 1) If u is orthogonal to every v V, then <u,u> = 0  u = 0. 

           2) For u,v  0; if u ⊥ v, the angle between u and v is 
2


 

Example: let V = Rn, and <  ,  >- the usual scalar product.  

(1, 1, 1) ⊥  (1,-1,0) because <(1,1,-1), (1,-1,0)> = 1.1-1.1+0.0 = 0 

3.2. Definition: Let S be a subset of V. The orthogonal complement of S, denoted by 
⊥S  (read S “perp”) consists of those vectors in V which are orthogonal to every vectors of S, 

that is to say, 

⊥S  = {vV | <v,u> = 0  u  S}. 

In particular, for a given u  V;  ⊥⊥ = uu = {vV | v ⊥ u}. 

The  following properties of S⊥  are easy to prove. 

3.3. Proposition: Let V be an ISP. For S  V,  S⊥ is a subspace of V and 

 S⊥  S  {0}. Moreover, if S is a subspace of V then S⊥  S ={0}. 

Examples: 

1) Consider  R3 with usual scalar product. Then, we can compute  

(1,3, - 4)⊥ = {(x,y,z)  R3 | x+ 3y -4z = 0} 
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                 = Span {(3,-1,0); (0,4,3)}  R3 

2) Similarly {(1,-2,1); (-2,1,1)}⊥  = 












=++−

=+−


02

02
),,( 3

zyx

zyx
Rzyx  

                                                    = Span{(1,1,1)}. 

3.4. Definition: The set S  V is called orthogonal if each pair of vectors in S are 

orthogonal; and S is called orthonormal if S is orthogonal and each vector in S has unit 

length. 

To be more concretely, let S = {u1,u2,...,uk}. Then, 

+) S is orthogonal <ui,uj> = 0   i j; where 1  i  k; 1  j  k 

+) S is orthonormal <ui,uj> = 




=



jiif

jiif

1

0
 where 1 i  k; 1 j  k. 

The concept of orthogonality leads to the following definition of orthogonal and 

orthonormal bases. 

3.5. Definition: A basis S of V is called an orthogonal (orthonormal) basis if S is an 

orthogonal (orthonormal, respectively) set of vectors. We write ON–basis to stand for 

“orthonormal basis”. 

3.6. Theorem: Suppose that S is an orthogonal set of nonzero vectors in V. Then S is 

linealy independent. 

Proof: Let S = { u1, u2,…, uk} with ui  0  i and <ui, uj> = 0  i j 

Then, suppose 1, 2.... k  R such that: 
=

=
k

1i

ii 0u .  

It follows that  

0 = 
==

=
k

i

Jii

k

i

Jii uuuu
11

,,   = 
=

=
k

i

JJJJii uuuu
1

,,   for fixed j {1,2,...k}. 

Since <uj,uj>  0 we must have that j = 0; and this is true for any j  {1,2,...,k}. That 

means, 1 = 2 = ... = k = 0 yielding that S is linearly independent. 

Corollary: Let S be an orthogonal set of n nonzero vectors in a euclidean space V 

with dim V = n. Then, S in an orthogonal basis of V. 
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Remark: Let S = { e1, e2, ...en} be an ON – basis of V and u,v V. Then, the 

coordinate representation of the inner product in V can be written as   

<u,v> =  
= = ===

===
n

i

n

J

n

i

S

T

SiiJiJi

n

J

JJ

n

i

ii vuvuvueeeveu
1 1 111

][][,,  

(since  <ei , eJ > = 




=



jiif

jiif

1

0
   ) 

3.7. Pithagorean theorem: Let u ⊥v. Then, we have that u 2 + v 2 = vu + 2  

Proof: vu + 2 = <u +v,u+v> = <u,u> + <v,v> +2<u,v> =  u 2 + v 2 

Example: Let V = C[-, ], and <f,g> =  −




dttgtf )()(  for all f, g  V 

Consider S = {1, cost, con2t,..., cosnt, sint, ... sinnt,...}. Due to the fact that 

−




mtnt cos.cos  dt = 0  m  n and 



−
ntsin  sinmt dt = 0  m  n, and −




mtnt sincos  dt = 0 

 m,n, we obtain that S is an orthogonal set. 

3.8. Theorem: Suppose S = {u1, u2,...un} be an orthogonal basis of V and v V. Then 

v = 
= 

n

i

i

ii

i u
uu

uv

1

.
,

,
 

In orther word, the coordinate of v with respect to S is  
























nn

n

uu

uv

uu

uv

uu

uv

,

,
,...,

,

,
,

.

,

22

2

11

1  

Proof. Let V = 
=

n

k 1

kuk . We now determine k k = 1,...n. Taking the inner 

product <v , uj>, we have that 

<v,uj> = = 
==

jk

n

k

k

n

k

jkk uuuu ,,
11

  = j <uj,uj> for fixed j  {1,2,…,n}, 

because, <uk,uj>=0 if  k   j. 

Therefore j = 




jj

j

uu

uv

,

,
 for all j  {1,2,...,n}.  (q.e.d) 

Example: V = R3 with usual scalar product < .,. > 
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S = {(1,2,1); (2,1,-4); (3,-2,1)} is an orthogonal basis  of R3. Let v = (3, 5, -4). Then 

to compute the coordinate of v with respect to S we just have to compute  

1 = 
2

3

6

9

)1,2,1(

)4,5,3(),1,2,1(
2

==
−

−
 

2 = 
7

9

21

27

)4,2,1(

)4,5,3(),4,1,2(
2

==
−

−−
 

3 = 
14

5

)1,2,3(

)4,5,3(),1,2,3(
2

−
=

−

−−
 

Therefore: (v)S = 






 −

14

5
,

7

9
,

2

3
 

Note: If S = {u1,u2,...un} is an ON – basis of V; then for v V we have that  

v =
=


n

i

ii uuv
1

,   

In other words, (v)S = (<v, u1>; <v,u2>,..., <v,un>). 

3.9. Gram-Schmidt orthonormalization process: 

As shown a bove, the ON – Basis has many important properties. Therefore, it is natural to 

pose the question: For any Euclidean space, does an ON–Basis exist? Precisely, we have the 

following problem. 

Problem: Let {v1, v2,...vn} be a basis of Euclidean space V. Find an ON – basis 

{e1,e2,...en} of V such that  

                  Span {e1,e2,...,ek} = Span {v1,v2,...,vk} k = 1,2,...,n.                              (*) 

Solution: Firstly, we find an orthogonal basis {u1,u2,...un} of V satisfying: 

Span {u1,u2,...,un} = Span {v1,v2,...,vk}  k = 1,2...n. 

To do that, let us start by putting:  

u1 = v1, then, 

u2 = v2 + 21u1. Let find the real number 21 such that <u2, u1> = 0. 

This is equivalent to 21 = - 




11

12

,

,

uu

uv
, and hence u2 = v2 - 





11

12

,

,

uu

uv
u1. 
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It is straightforward to see that  

span {u1,u2} = span {v1,v2}. 

Proceeding in this way, we find uk in the form 

uk = kv
1 2 1

1 2 1
1 1 2 2 1 1

, , ,
. . ... .

, , ,
k k k k

k
k k

v u v u v u
u u u

u u u u u u
             

for all k = 2,..., n, yielding the set of vectors {u1,u2,...,un} satisfying that <ui, uj> = 0  i  j 

and  

Span {u1,u2,...,uk} = Span {v1,v2,...vk}  for all      k = 1,2,..., n. 

Secondly, putting: e1 = 
1

1

u

u
; e2 = 

2

2

u

u
;... ; en = 

n

n

u

u
 we obtain an ON – basis of V 

satisfying that  Span {e1,e2,...ek} = span {v1,v2,...,vk} k = 1,...,n.  

The above process is called the Gram – Schmidt orthonormalization process. 

Example: Let V = R3 with usual scalar product < .,. >, and 

S = {v1 = (1,1,1); v2 = (0,1,1); v3 = (0,0,1)} be a basis of V. 

We  implement the Gram – Schmidt orthonormalization process as follow:  

u1 = v1= (1,1,1) 

u2 = v2 - 1

11

12 .
,

,
u

uu

uv




= (0,1,1) - 








−=

3

1
,

3

1
,

3

2
)1,1,1(

3

2
 

u3 = v3 - )
2

1
,

2

1
,0()

3

1
,

3

1
,

3

2
(

2

1
)1,1,1(

3

1
−=−−  

Now, putting: e1 = 
1

1

u

u
= 









3

1
,

3

1
,

3

1
; e2 = 

2

2

u

u
= 








−

6

1
,

6

1
,

6

2
; 

 e3 = 
3

3

u

u
= 








−

2

1
,

2

1
,0 , we obtain an ON – basis {e1,e2,e3} satisfying that  

Span {e1} = span {v1}; Span {e1,e2} = Span{v1,v2} and span {e1,e2,e3} = Span {v1,v2,v3} = 

R3. 

3.10. Corollary: 1) Every Euclidean space has at least one orthonormal basis. 
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2) Let S = {u1,u2,...uk} be an orthonormal subset of vectors is an Euclidean space V 

with dim V = n > k. Then, we can extend S to an ON – basis  U = {u1,u2, ... ,uk,uk+1,..., un} of 

V. 

IV. Projection and least square approximations 

4.1. Theorem: Let V be an Euclidean space, W be a subspace of V with W  {0}.  

Then for each v  V, there exists a unique couple of vectors w1  W and w2  W⊥  such that 

v = w1 +w2. 

Proof. By Gram – Schmidt ON  process, W has an ON–basis, say S = {u1,u2,...,uk}. 

Then, we extend S to an ON – basis {u1,u2, ... ,uk, uk+1,..., un} of V. Now, for v  V we have 

the expression 

v = 
=

n

J

JJ uu
1

,v = 
=

k

J

JJ uu
1

,v + 
+=

n

kl

ll uu
1

,v . 

Putting w1 = 
=

k

J

JJ uu
1

,v ; w2  = 
+=

n

kl

ll uu
1

,v  we have that  w1 W  because {u1,..., uk} is a 

basis of W. We now prove that w2 W⊥. Indeed, taking any u  W, we have that 

u = 
=

k

i

ii uuu
1

, . 

Therefore,  <w2,u> =  
+= =

n

kl

k

i

iill uuuuuv
1 1

,,, =  
+= =

n

kl

k

i

illi uuuvuu
1 1

,,, = 0 

(because l i for l = k+1,...,n and i = 1,...,k). 

Hence, w2 ⊥u for all u W. this  means that w2  W⊥. We next prove that the 

expression v = w1+w2 for w1  W and w2 W⊥ is unique. To do that, let v = 
'
2

'
1 ww +  be 

another expression such that 
'
1w   W and '

2w   W⊥
 . It follows that v = w1+w2 = 

'
2

'
1 ww +   

w1 - 
'
1w  = 

'
2w - w2. Hence, w1 - 

'
1w   W and also w1 - 

'
1w  = 

'
2w - w2 W⊥. This yields w1 - 

'
1w W W⊥={0}  w1 - 

'
1w  = 0  w1 = 

'
1w  . Similarly, 2

'
2 ww = . Therefore, the 

expression V = w1 + w2 for w1  W and w2  W⊥ is unique. 

4.2. Definition: 
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1) Lef W be a nontrivial subspace of V. Since for all v  V, v can be uniquely 

expressed as v = w1 + w2 with w1  W and w2  W⊥, we write this relation as V = W  W⊥
 , 

and call V the direct sum of W and W⊥. 

2) We denote by P the mapping  P : V → W 

    P (v) = w1 if v = w1 + w2 

where w1  W and w2  W⊥. Then, P is called the orthogonal projection on to W. 

Remarks: 

1) Looking at the proof of Theorem 4.1, we obtain that:  

For an ON – basis S = {u1,..., uk} of W, the orthogonal projection P on W can be 

determined by 

P: V → W 

                                       P(v) = 
=

k

1i

ii uu,v for all v  V. 

2) For an othogonal projection P: V → W we have that, P is a linear operator 

satisfying properties that P2 = P; Ker P = W⊥ and ImP = W. 

Example: Let V = R3 with usual scalar product and W = Span{(1,1,0); (1,-1,1)} and 

P: V → W be the orthogonal projection onto W, and v = (2,1,3). We now find P(v). To do so, 

we first find an ON – basis of W. This can be easily done by using Gram-Schmidt process to 

obtain  

                            S = 
















−









3

1
,

3

1
,

3

1
,0,

2

1
,

2

1
= {u1,u2} 

Then P(v)= <v, u1> u1 + <v, u2> u2  = (1, -1,-2). 

 

4.3. Lemma: Let V be an Eudidean space; W be a subspace of V, and P: V → W be 

the orthogonal projection on W. Then )v(Pvuv −−  for all v V and u W. 

Proof: We start by computing  

uv − 2  = u)v(P)v(Pv −+− 2 
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Since v – P(v)  W⊥ and P(v) –u W (because v = P(v)+v – P(v) where P(v) W 

and v – P(v) W⊥), we obtain using Pithagorean Theorem that 

uvvv −+− )(P)(P 2 = 
222

)v(Pvu)v(P)v(Pv −−+− . 

Therefore, uv −   ( )v P v ; and the equality happens if and only if u = P(v). 

4.4. Application: Least square approximation 

For A  Mmxn(R); B  Mmx1(R) consider the following problem. 

Problem: Let AX = B have no solution, that is, B  Colsp(A). Then, we pose the 

following question: 

Which vector X will minimize the norm || AX-B||2 ? 

Such a vector, if it exists, is called a least square solution of the system AX = B. 

Solition: We will use Lemma 4.3 to find the least square solution. To do that, we 

consider V = Mmx1(R) with the usual inner product <u,v>= uTv for all u and v  V . 

Putting colsp (A) = W and taking into account that AX W for all X  Mnx1(R), we 

obtain, by Lemma 4.3, that || AX-B||2  is smallest for such an X = X
~

 that A X
~

 = P(B), where 

P: V →W is the orthogonal projection on to W, (since || AX-B||2 = || B - AX||2  || B- P(B)||2 

and the equality happens if and only if AX = P(B) ). 

We now find X
~

 such that A X
~

 = P(B). To do so, we write  

A X
~

 – B = P(B) - BW⊥. 

This is equivalent to  

A X
~

– B ⊥ U for all U  W = Colsp (A) 

 A X
~

 – B ⊥ Ci  i = 1,2... n (where Ci is the ith column of A) 

 < A X
~

 – B, Ci > = 0  i = 1,2... n. 

 
TC i (A X

~
– B) = 0  i = 1,2... n. 

 AT (A X
~

 – B) = 0 ATA X
~

 –ATB = 0 

                                            ATA X
~

 = ATB     (4.1) 

Therefore, X
~

 is a solution of the linear system (4.1). 
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Example: Consider the system 
















=
































−

2

1

1

110

011

211

3

2

1

x

x

x

 

Since r(A) = 2 < r ( A
~

) = 3, this system has no solution. We now find the vector X
~

 

such X
~

 minimizes the norm ||AX - B||2  where A = 
















−

110

011

211

; B = 
















2

1

1

. 

To do so, we have to solve the system 

ATA X
~

 = ATB 

 
















=
































4

2

2

532

330

202

3

2

1

x

x

x

 

 







=+

=+

3

2

1

32

31

xx

xx

     













−=

−=

arbitrary  is 

3

2

1

3

32

31

x

xx

xx

 

We thus obtain X
~

 = 

















−

−

t

t

t

3

2
1

   t  R. 

V. Orthogonal matrices and orthogonal transformation 

5.1. Definition. An nxn matrix is said to be orthogonal if ATA = I = AAT (i.e., A is 

nonsingular and A-1 = AT) 

Examples: 1) A = 




−



sin

cos
 









cos

sin
 

2) A = 

























−

100

0
2

1

2

1

0
2

1

2

1
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5.2. Proposition. Let V be an Euclidean Space. Then, the change –of–basis matrix 

from an ON – basis to another ON – basis of V is an orthogonal matrix. 

Proof. Let S = {e1, e2, …,en} and U={u1, u2,…,un} be two ON – bases of V and A 

be the change–of–basis matrix from S to U, say A = (aij). Putting AT = (bij);   A
TA = (cij) 

where bij = aji; compute 

cij = 
==

=
n

k

kJki

n

k

kJik aaab
11

= (a1i  a2i  ...  ani ) 





















nJ

J

J

a

a

a


2

1

 

= =
==

Ji

n

l

llJ

n

k

kki uueaea ,,
11

 =    1 if i=j 

  0 if i j 

Therefore, ATA = I. This means that A is orthogonal. 

Example: Let V = R3 with the usual scalar product < .,. > 

S = {(1,0,0), (0,1,0),(0,0,1)} be the usual basis of R3; 

U = 
























−








−

3

1
,

3

1
,

3

1
;

6

2
,

6

1
,

6

1
;0,

2

1
,

2

1
 be another ON – basis of R3. 

Then, the change – of – basis matrix for S to U is  

A = 

























−

−

3

1

6

2
0

3

1

6

1

2

1
3

1

6

1

2

1

. Clearly, A is an orthogonal matrix. 

5.3. Definition. Let (V, < .,. >) be an IPS. Then, the linear transformation f: V → V is 

said to be orthogonal if < f(x),f(y) > = <x,y> for all x,y  V. 

The following theorem provides another criterion for the orthogonality of a linear 

transformation in Euclidean spaces. 

5.4. Theorem: Let V be an Euclidean space, and f: V → V be a linear transformation. 

Then, the following assertions are equivalent. 

i) f is orthogonal. 
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ii) For any ON – basis S of V, the matrix representation [f]S of f corresponding to S is 

orthogonal. 

iii) ||f(x)|| = ||x|| for all x V. 

Proof: Let S be an ON – basis of V. Then, taking the coordinates by this basis, we 

obtain 

<f(x), f(y)> = T

Sxf )]([ [f(y)]S = ([f]S[x]S)T [f(x)]S[f(y)]S 

= T

Sx][ T

Sf ][ [f]S[y]S  

Therefore, for  an ON – basis S = {u1,u2,...,un} of V, we have that: 

<f(x), f(y)> = <x,y>  x,y S 

             
S

T

SSS

T

S

T

S yxyffx =  x,y  S. 

            
ji

ji

if

if
uuuffu

Sj

T

Sijs

T

s

T

Si


=





==
0

1
  i,j  {1,2...n} 

      
SS

T

S
fIff =  is an orthogonal matrix. 

We thus obtain the equivalence (i)  (ii). We now prove the equivalence (i)  (iii). 

(i)  (iii): Since < f(x), f(y) >= <x,y> holds true  for all x,y V, simply taking x = y, 

we obtain  f(x) 2 = x2  f(x)  = x x  V. 

(iii)  (i): We have that  f(x + y) 2 = x + y2 for all x,yV. Therefore,  

y xy, x  y)f(x y),f(x ++=++ . 

  ( ) ( ) ( ) ( ) ( ) ( )yfyfyfxfxfxf ,,2, ++ = yyyxxx ,,2, ++  

 ( ) ( ) yxyfxf ,, =   x,y  V. 

5.5. Definition: Let A be real nxn matrix. Then A is said to be orthogonally 

diagonalizable if there is an orthogonal matrix P such that PTAP is a diagonal matrix. 

The process of finding such an orthogonal matrix P is called the orthogonal 

diagonalization of A. 

Remark: If A is  orthogonally diagonalizable, then, by definition,  P – orthogonal 

such that 
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PTAP = D – diagonal  A = PDPT  AT = PDPT = A. 

Therefore, A is symmetric. 

The converse is also true as we accept the following theorem. 

5.6 Theorem: Let A be a real, nxn matrix. Then, A is orthogonally diagonalizable if 

and only if A is symmetric.  

The following lemma shows an important property of symmetric real matrices. 

5.7. Lemma: Let A be a real symmetric matrix; and 1; 2 be two distinct eigenvalues 

of A; and X1, X2 be eigenvectors corresponding to 1, 2, respectively. Then, X1 ⊥ X2 with 

respect to the usual inner product in Mnx1 (R) (that is, 21 X,X = T

1X X2 = 0) 

Proof: In fact, ( ) 2
T

12
t
11211 XAXXXX,X ==  

= 21222
T
12

T
12

TT
1 X,XXXAXXXAX ===  

Therefore, (  1 -  2) 0X,X 21 = . Since  1   2, this implies that 0X,X 21 = . 

Next, we have the algorithm of orthogonal diagonalization of a symmetric real  matrix A. 

5.8. Algorithm of orthogonal diagonalization of symmetric nxn matrix A:  

Step 1. Find the eigenvalues of A by solving the characteristic equation  

det (A - I) = 0 

Step 2. Find all the linearly independent eigenvectors of A, say , X1, X2,... Xn. 

Step 3. Using Gram – Schmidt process to obtain the ON – basis {Y1, Y2,... Yn} from 

{X1, X2, ... Xn}; (Note: This Gram-Schmidt process can be conducted in each eigenspace 

since the two eigenvectors in distinct eigenspaces are already orthogonal due to Lemma 5.7). 

Step 4. Set P = [Y1 Y2 ... Yn]. We obtain immediately that 

PT AP = 



















n




...00

0...0

0...0

2

1


 

where i  is the eigenvalue corresponding to the eigenvector Yi , i = 1,2..., n, 

respectively. 
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Example: Let A = 

















011

101

110

 

To diagonalize orthogonally A, we follow the algorithm 5.8.  

Firstly, we compute the eigenvalues of A by solving: A - I = 0 

 

−

−

−

11

11

11

 = 0  (+1)2 ( - 2) = 0  




=

−==

2

1

3

21
 

For 1 = 2 = - 1, we compute eigenvectors X by solving. 

(A + E)X = 0 x1 + x2 + x3 = 0 for X = 

















3

2

1

x

x

x

 

Then, there are two linearly independent eigenvectors corresponding to   = -1, that are 

 X1 = 

















−

=
















−

1

1

0

X;

0

1

1

2 . In other worlds, the eigenspace E(-1) = Span 

































−















−

1

1

0

;

0

1

1

.  

By Gram – Schmidt process, we have u1 = v1 = 

















−

0

1

1

; 

u2 = v2 - 
( )

























−

−

=


1

2

1

2

1

u.
u,u

u,v
1

11

12 . Then, we put 
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Y1 = 

























−=

0

2

1

2

1

U

U

1

1 ; Y2 = 

























−

−

=

6

2

6

1

6

1

U

U

2

2  to obtain two orthonormal 

eigenvectors Y1, Y2 corresponding to  = -1. 

For 3 = 2, We solve (A – 2E) X = 0 

 

















=


























=−+

=+−

=++−

1

1

1

x

x

x

x

0x2xx

0xx2x

0xxx2

1

3

2

1

321

321

321

 

Therefore, there is only linearly independent eigenvector corresponding to  = 2. The  

eigenspace is E2 = Span 

































1

1

1

. To implement the Gram-Schmidt process, we just have to 

put Y3 = 

























3

1

3

1

3

1

 

We  now obtain the ON – basis Y1, Y2, Y3} of M3x1 (R) which contains the linearly 

independent eigenvectors of A. Then, we put 

P = 

























−−

−

3

1

6

2
0

3

1

6

1

2

1
3

1

6

1

2

1

 to obtain PTAP = 

















−

−

200

010

001

 finishing the orthogonal 

diagonalization of A. 

IV. Quadratic forms 

6.1 Definition: Consider the space Rn. A quadratic form q on Rn is a mapping  

q: Rn → R defined by   
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q(x1, x2,... xn) = 
 nji

jiij xxc
1

 for all (x1, x2,... xn)  Rn                        (6.1) 

where the constants cij  R are given, 1  i  j  n. 

Example: Let q : R3 → R be defined by 

q (x1, x2, x3) = 
2
332

2
23121

2
1 xxx2xxxxx2x −−+−−    (x1, x2, x3 )  R3. 

Then q is a quadratic form on R3. 

6.2. Definition: The quadratic form q on Rn is said to be in canonical form (or in 

diagonal form) if 

q(x1, x2, ..., xn) = c11
2

1x  + c22
2

2x  + ... + cnn
2x n  for all (x1,x2,...xn)  Rn. 

(That is, q has no cross product terms xixj with ij). 

We will show that, every quadratic form q can be transformed to the canonical form 

by choosing a relevant coordinate system. 

In general, the quadratic form (6.1) can be expressed uniquely in the matrix form as 

q(x)=q(x1, x2, ..., xn)=[x]TA[x] for x=(x1, x2, ..., xn)  Rn    

where [x] = 

1

2

n

x

x

x

 is the coordinate vector of  X with respect to the usual basis of Rn and  

A = [aij] is a symmetric matrix with aij = aji = cij/2 for i j, and aii = cii for  i = 1,2...n. 

This fact can be easily seen by directly computing the product of matrices of the form: 

q(x1,x2..., xn) = (x1  x2 ... xn) 





















nnnn

n

n

aaa

aaa

aaa









21

22221

11211

 





















n

2

1

x

x

x


 = [x]T A[x] 

The above symmetric matrix A is called the matrix representation of the quadratic 

form q with respect to usual basis of Rn. 

6.3. Change of coordinates: 
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Let E be the usual (canonical) basis of Rn. For x = (x1,...,xn)Rn, as above, we denote 

by [x] the coordinate vector of x with respect to E.  Let q(x) = [x]TA[x] be a quadratic form 

on Rn with the matrix representation A. Now, consider a new basis S of Rn, and let P be the 

change-of–basis matrix from E to S. Then, we have [x] = [x]E = P[x]S .  

Therefore, q = [x]TA[x] = 
T
S]x[ PTAP[x]S. 

Putting B = PTAP; Y = [x]S, we obtain that, in the new coordinate system with basis S, q has 

the form: 

q = YTBY, where B = PTAP and Y = [x]S. 

Example: Consider the quadratic form 

q: R3 → R defined by q(x1,x2,x3) = 2x1x2 +2x2x3 +2x3x1, or in matrix representation 

by 

q = (x1 x2 x3) 

































3

2

1

x

x

x

011

101

110

 = XTAX for X = 

















3

2

1

x

x

x

-the coordinate vector  of 

(x1,x2,x3) with respect to the usual basis of R3. Let S = {(1,0,0); (1,1,0); (1,1,1)} be another 

basis of R3. Then, we can compute the change-of –basis matrix P from the usual basis to the 

basis S as  

P = 

















100

110

111

. 

Thus, the relation between the old and new coordinate vector X = 

















3

2

1

x

x

x

 and Y = 

















3

2

1

y

y

y

 = 

[(x1, x2, x3)]S  is 

















3

2

1

x

x

x

 = 

















100

110

111

















3

2

1

y

y

y

. Therefore, changing to the new coordinates, 

we obtain 

q = XTAX = YTPTAPY 
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= (y1 y2 y3) 

















111

011

001

















011

101

110

















100

110

111

















3

2

1

y

y

y

 

= (y1 y2 y3) 
















642

421

211

















3

2

1

y

y

y

  

= 133221
2
3

2
2

2
1 yy8yy4yy2y6y2y +++++ . 

6.4. Transformation of quadratic forms to principal axes (or canonical forms):  

Consider a quadratic form q in matrix representation: q = XTAX, where X = [x] is 

the coordinate vector of x with respect to the usual basis of Rn, and A is the matrix 

representation of q. 

Since A is symmetric, A is orthogonally diagonalizable. This means that there exists 

an orthogonal matrix P such that PTAP is diagonal, i.e., 

PTAP = 





















n













00

00

00

2

1

- a diagonal matrix. 

We then change the coordinate system by putting X = PY. This means that we choose a new 

basis S such that the change–of–basis matrix from the usual basis to the basis S is the matrix 

P. Hence, in the new coordinate system, q has the form: 

q = XTAX = YTPTAPY = YT 



























n

2

1

00

00

00









Y 

= 
2
nn

2
22

2
11 y...yy +++  for Y = 

















3

2

1

y

y

y

. 

Therefore, q has a canonical form; and the vectors in the basis S are called the principal axes 

for q. 
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The above process is called the transformation of q to the principal axes (or the 

diagonalization of q). More concretely, we have the following algorithm to diagonalize a 

quadratic form q. 

 

6.5. Algorithm of diagonalization of a quadratic form q = XTAX: 

Step 1: Orthogonally diagonalize A, that is, find an orthogonal matrix P so that PTAP 

is diagonal. This can always be done because A is a symmetric matrix. 

Step 2. Change the coordinates by putting X = PY (here P acts as the change–of–

basis matrix). Then, in the new coordinate system, q has the diagonal form: 

q =  YTPTAPY = (y1  y2... yn)  



























n

2

1

00

00

00









 

















3

2

1

y

y

y

 

                       = 
2
nn

2
22

2
11 y...yy +++  finishing the process. 

Note that 1,2,..., n  are all eigenvalues of A 

Example: Consider q = 2x1x2 +2x2x3 +2x3x1= (x1 x2 x3)

































3

2

1

x

x

x

011

101

110

 

To diagonalize q, we first orthogonally diagonalize A. This is already done in 

Example after algorithm 5.8, by this example, we obtain 

P = 

























−−

−

3

1

6

2
0

3

1

6

1

2

1
3

1

6

1

2

1

 for which  PT AP = 

















−

−

200

010

001

 

We next change the coordinates by simply putting  
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















3

2

1

x

x

x

 =P 

















3

2

1

y

y

y

 

Then, in the new coordinate system, q has the form: 

q = (y1 y2 y3) P
TAP 

















3

2

1

y

y

y

 = (y1 y2 y3) 

















−

−

200

010

001

 

















3

2

1

y

y

y

= -
2
3

2
2

2
1 y2yy +−  

6.6. Law of inertia: Let q be a quadratic form on Rn. Then, there is a basis of Rn (a 

coordinate system in Rn) in which q is represented by a diagonal matrix, every other diagonal 

representation of q has the same number p of positive entries and the same number m of 

negative entries. The difference s= p - m is called the signature of q. 

Example: In the above example q = 2x1x2 +2x2x3 +2x3x1 we have that p = 1; m=2. 

Therefore, the signature of q is  s  = 1-2 = -1. To illustrate the Law of inertia, let us use 

another way to transform q to canonical form as follow.  

Firstly, putting  










=

+=

−=

'
33

'
2

'
22

'
2

'
11

yx

yyx

yyx

 we have that        

                            q = 2
'
3

'
1

2'
2

2'
1 yy4y2y +−  

                                           = 2
2'

3
'
2

2'
2

2'
3

'
3

'
1

2'
1 y2y2y2yyy2y −−−







 ++  

                                           = 2 ( ) 2'
3

2'
2

2'
3

'
1 y2y2yy −−+ . 

Putting 










=

=

+=

'
33

'
22

'
3

'
11

yy

yy

yyy

 we obtain q = 2 2

3

2

2

2

1 22 yyy −− . 

Then, we have the same p = 1; m = 2; s = 1-2 = -1 as above.  

6.7 Definition: A quadratic form q on Rn is said to be positive definite if q(v) > 0 for 

every nonzero vector v  Rn. 
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By the diagonalization of a quadratic form, we obtain immediately the following 

theorem. 

6.8. Theorem: A quadratic form is positive definite if and only if all the eigenvalues 

of its matrix representation are positive. 

VII. Quadric lines and surfaces 

7.1. Quadric lines: Consider the coordinate plane xOy. 

A quadric line is a line on the plane xOy which is described by the equation  

a11x
2 + 2a12xy + a22y

2 + b1x + b2y + c = 0, 

or in matrix form: 

(x y) 
11 12

1 2
12 22

0
a a x x

b b c
a a y y

 

where the 2x2 symmetric matrix A = (aij)  0. 

We can see that the equation of a quadric line is the sum of a quadratic form and a 

linear form. Also, as known in the above section, the quadratic form is always transformed to 

the principal axes. Therefore, we will see that we can also  transform the quadric lines to the 

principal axes. 

7.2. Transformation of quadric lines to the principal axes: 

Consider the quadric line described by the equation 

(x  y) A 0=+







+








c

y

x
B

y

x
     (7.1) 

where A is a 2x2 symmetric nonzero matrix, B=(b1 b2) is a row matrix, and c is constant. 

Basing on the algorithm of diagonalization of a quadratic form, we then have the following 

algorithm of transformation a quadric line to the principal axes (or the canonical form). 

Algorithm of transformation the quadric line (7.1) to principal axes. 

Step 1. Orthogonally diagonalize A to find an orthogonal matrix P such that 

PT A P = 












2

1

0

0
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Step 2. Change the coordinates by putting 
x

y
=P

'

'

x

y
. 

Then, in the new coordinate system, the quadric line has the form 

2 2 ' '
1 2 1 2' ' ' ' 0x y b x b y c  

 where ( ) ( )Pbbbb 21

'

2

'

1 = . 

  

Step 3. Eliminate the first order terms if possible. 

Example: Consider the quadric line described by the equation 

x2+2xy+y2+8x+y=0                                              (7.2) 

To perform the above algorithm, we write (7.2) in a matrix form 

( ) ( ) 0
y

x
18

y

x

11

11
yx =








+
















. 

Firstly, we diagonalize A = 








11

11
 orthogonally starting by computing the 

eigenvalue of A from the characteristic equation 






=

=
=

−

−

2

0
0

11

11

2

1








 

For 1 = 0, there is one linearly independent eigenvector u1 = 








− 1

1
 

For 2 = 2, there is also only one linearly independent eigenvector u2= 








1

1
 

The Gram-Schmidt process is very simple in this case. We just have to put  

e1 = 



















==



















−

=

2

1

2

1

||||
,

2

1

2

1

|||| 2

2
2

1

1

u

u
e

u

u
.  
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Then, setting P = 



















−
2

1

2

1

2

1

2

1

 we have that PT AP = 








20

00
 

Next, we change the coordinates by putting 


























−

=








'y

'x

2

1

2

1
2

1

2

1

y

x
 

Therefore, the  equation in new coordinate system is 

( ) ( ) 0
'y

'x

2

1

2

1
2

1

2

1

18
'y

'x

2

0

0

0
'y'x =



























−

+















 

 0'y
2

9
'x

2

7
'y2
2 =++  

 0
112

81.2
'x

2

7

24

9
'y2

2

=












−+








+  

(We write this way to eliminate the first order term '
2

9
y ) 

Now, we continue to change coordinates by putting 










+=

−=

24

9
'yY

112

281
'xX

 

In fact, this is the translation of the coordinate system to the new origin 

I 











 −

24

9
,

112

281
 

Then, we obtain the  equation in principal axes: 

2Y2 + 0
2

7
=X . 
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Therefore, this is a parabola. 

7.3. Quadric surfaces: 

  Consider now the coordinate space Oxyz.  

A quadric surface is a surface in space Oxyz which is described by the equation 

a11x
2+ a22y

2+a33z
2+2a12xy+2a23yz + 2a13zx+b1x+b2y+b3z + c = 0 

or, in matrix form 

( ) ( ) ,0321

332313

232212

131211

=+
















+
































c

z

y

x

bbb

z

y

x

aaa

aaa

aaa

zyx  

where A =(aij) is a 3x3 symmetric matrix; A  0. 

Similarly to the case of quadric lines, we can transform a quadric surface to the 

principal axes by the following algorithm. 

7.4. Algorithm of transformation of a quadric surface to the principal axes (or to 

the canonical form): 

Step 1. Write the equation in the matrix form as above 

( ) 0c

z

y

x

B

z

y

x

Azyx =+
















+
















. 

Then, orthogonally diagonalize A to obtain an orthogonal matrix P such that 

PTAP = 























3

2

1

00

00

00

 

Step 2. Change the coordinates by putting 

















=
















'z

'y

'x

P

z

y

x

 

Then, the equation in the new coordinate system is 

0'''''' '

3

'

2

'

1

2

3

2

2

2

1 =++++++ czbybxbzyx   
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where ( ) ( ) Pbbbbbb 321

'

3

'

2

'

1 =  

Step 3. Eliminate the first order terms if possible. 

Example: Consider the quadric surface described by the equation:  

2xy + 2xz + 2yz – 6x – 6y – 4z = 0 

 ( ) ( ) 0

z

y

x

466

z

y

x

011

101

110

zyx =
















−−−+
































. 

The orthogonal diagonalization of A = 

















011

101

110

 was already done in the 

example after algorithm 5.8 by that we obtain  

P = 

























−−

−

3

1

6

2
0

3

1

6

1

2

1
3

1

6

1

2

1

 for which PTAP=
















−

−

200

010

001

. 

We then put 

















=
















'z

'y

'x

P

z

y

x

 to obtain equation in new coordinate system as 

( )4662 2'2'2' −−−++−− zyx  0

'

'

'

3

1

6

2
0

3

1

6

1

2

1
3

1

6

1

2

1

=








































−−

−

z

y

x

 

 0'
3

16
'

6

4
2 2'2'2' =−++− zyzyx  

 - x2 - 010
3

4
'z2

6

2
'y

22

=−







−+








−  

Now, we put (in fact, this is a translation) 
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













−=

−=

=

3

4
'zZ

6

2
'yY

'xX

 (the new origin is I 






 

3
;

6

2
,0 ) 

to obtain the equation of the surface in principal axes 

X2 + Y2 – 2Z2 = -10. 

We can conclude that, this surface is a two-fold hyperboloid (see the subsection 7.6). 

7.6. Basic quadric surfaces in principal axes: 

1) Ellipsoid: 1
2

2

2

2

2

2

=++
c

z

b

y

a

x
 

(If a = b = c, this is a sphere) 
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2) 1 – fold hyperboloid 1
c

z

b

y

a

x
2

2

2

2

2

2

=−+  

 

3) 2 – fold hyperboloid 1
2

2

2

2

2

2

−=−+
c

z

b

y

a

x
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4) Elliptic paraboloid 0
2

2

2

2

=−+ z
b

y

a

x
 

(If a = b this a paraboloid of revolution) 

 

5) Cone: 0
c

z

b

y

a

x
2

2

2

2

2

2

=−+  
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6) Hyperbolic – paraboloid (or Saddle surface) 0
2

2

2

2

=−− z
b

y

a

x
 

 

 

7) Cylinder: A cylinder has one of the following form of equation:  

f(x, y) = 0; or f(x, z) = 0 or f(y, z) = 0. 

Since the roles of x, y, z are equal, we consider only the case of equation f(x,y) = 0. 

This cylinder is consisted of generating lines paralleling to z–axis and leaning on a directrix 

which lies on xOy – plane and has the equation f(x,y) = 0 (on this plane). 

Example of quadric cylinders:  

1) x2 + y2 = 1 
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2) x2 -y = 0 

 

3) x2-y2 = 1 
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