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Preface

This Lecture on Algebra is written for students of Advanced Training Programs of
Mechatronics (from California State University —CSU Chico) and Material Science (from
University of Illinois- UIUC). When preparing the manuscript of this lecture, we have to
combine the two syllabuses of two courses on Algebra of the two programs (Math 031 of
CSU Chico and Math 225 of UIUC). There are some differences between the two syllabuses,
e.g., there is no module of algebraic structures and complex numbers in Math 225, and no
module of orthogonal projections and least square approximations in Math 031, etc.
Therefore, for sake of completeness, this lecture provides all the modules of knowledge
which are given in both syllabuses. Students will be introduced to the theory and applications
of matrices and systems of linear equations, vector spaces, linear transformations,
eigenvalue problems, Euclidean spaces, orthogonal projections and least square
approximations, as they arise, for instance, from electrical networks, frameworks in
mechanics, processes in statistics and linear models, systems of linear differential equations
and so on. The lecture is organized in such a way that the students can comprehend the most
useful knowledge of linear algebra and its applications to engineering problems.

We would like to thank Prof. Tran Viet Dung for his careful reading of the manuscript. His
comments and remarks lead to better appearance of this lecture. We also thank Dr. Nguyen

Huu Tien, Dr. Tran Xuan Tiep and all the lecturers of Faculty of Applied Mathematics and
Informatics for their inspiration and support during the preparation of the lecture.

Hanoi, October 20, 2008

Assoc. Prof. Dr. Nguyen Thieu Huy
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Chapter 1: Sets

I. Concepts and Basic Operations

1.1. Concepts of sets: A set is a collection of objects or things. The objects or things

in the set are called elements (or member) of the set.

Examples:

- A set of students in a class.

- A set of countries in ASEAN group, then Vietnam is in this set, but China is not.
- The set of real numbers, denoted by R.

1.2. Basic notations: Let E be a set. If x is an element of E, then we denote by x € E

(pronounce: x belongs to E). If x is not an element of E, then we write x ¢ E.
We use the following notations:
3: “there exists”
3! : “there exists a Unique”
V: “ for each” or “for all”
=: “implies”
< ”1s equivalent to” or “if and only if”

1.3. Description of a set: Traditionally, we use upper case letters A, B, C and set

braces to denote a set. There are several ways to describe a set.

a) Roster notation (or listing notation): We list all the elements of a set in a couple
of braces; e.g., A = {1,2,3,7} or B = {Vietnam, Thailand, Laos, Indonesia, Malaysia, Brunei,
Myanmar, Philippines, Cambodia, Singapore}.

b) Set-builder notation: This is a notation which lists the rules that determine

whether an object is an element of the set.

Example: The set of real solutions of the inequality x* < 2 is
G={xxeR and-2<x<+2}=[-2,42]

The notation “|” means “such that”.
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¢) Venn diagram: Some times we use a closed figure on the plan to indicate a set.

This is called Venn diagram.

1.4 Subsets, empty set and two equal sets:

a) Subsets: The set A is called a subset of a set B if from x e A it follows that x €B.

We then denote by A — B to indicate that A is a subset of B.
By logical expression: A c B < (X e A= x €B)

By Venn diagram:

b) Empty set: We accept that, there is a set that has no element, such a set is called

an empty set (or void set) denoted by <.
Note: For every set A, we have that & c A.

c) Two equal sets: Let A, B be two set. We say that A equals B, denoted by A =B, if

Ac B and B — A. This can be written in logical expression by
A=Bo (Xxe A= xeB)

1.5. Intersection: Let A, B be two sets. Then the intersection of A and B, denoted by
A N B, is given by:

AN B = {x]|xeAand xeB}.
This means that
xe AnB < (x e Aand x € B).

By Venn diagram:

1.6. Union: Let A, B be two sets, the union of A and B, denoted by AUB, and given
by AUB = {x | xeA or xeB}. This means that
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xe AUB < (x e Aorx € B).

By Venn diagram:

1.7. Subtraction: Let A, B be two sets: The subtraction of A and B, denoted by A\B
(or A-B), is given by

A\B = {x | xeA and x¢B}
This means that:
xeA\B < (x € A and x¢B).

By Venn diagram:

1.8. Complement of a set:

Let A and X be two sets such that A < X. The complement of A in X, denoted by

CxA (or A’ when X is clearly understood), is given by

CxA=X\A={x|xeX andx ¢ A)}

={x | x ¢ A} (when X is clearly understood)
Examples: Consider X =R; A =[0,3] ={x|xeRand 0 <x <3}
B=[-1, 2] ={x|xeRand -1 <x < 2}.
Then,
1. ArB={xeR|0<x<3and-1<x<2}=

={xe R|0<x<-1}=]0, -1]
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2. AUB ={xeR|0<x<3o0r -1<x<2}
={xeR | -1<x <3} =[-1,3]
3.A\B={xe R | 0<x<3andx ¢ [-1,2]}
={xeR | 2<x<3}=[2,3]
4.A’=R\A={xeR|x<0 or x>3}
I1. Set equalities
Let A, B, C be sets. The following set equalities are often used in many problems
related to set theory.
1. AUB=BUA; AnB=BnA (Commutative law)
2. (AuB) UC = AU(BUC); (ANB)NC = An(BNC) (Associative law)
3. AU(BNC) = (AuB)N(AULC); An(BUC) = (AnB) U (ANC) (Distributive law)
4. A\ B = AnB’, where B’=CxB with a set X containing both A and B.

PROOF: Since the proofs of these equalities are relatively simple, we prove only one

equality (3), the other ones are left as exercises.

To prove (3), We use the logical expression of the equal sets.

xe A
xe Au(BnNC) =
xeBnC
{XEA
xeA
P xeB Xe i
xeC [XE
xeC
xe AuB
xe AuC
< xe(AuB)N(AUC)

This equivalence yields that Au(BNC) = (AuB)N(AUC).

The proofs of other equalities are left for the readers as exercises.
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I11. Cartesian products
3.1. Definition:

1. Let A, B be two sets. The Cartesian product of A and B, denoted by AxB, is given
by
A x B ={(x,y) (xeA) and (yeB)}.
2. Let A1, Az...An be given sets. The Cartesian Product of Az, A>...An, denoted by
A1 x Az2X...x An, is given by A1 x Az X....An = {(X1, X2....xn) | Xi € Ai=12....,n}
In case, A1 = A2 =...= An = A, we denote
ArXA2X..XAn=AXAXAX..XA=A"

3.2. Equality of elements in a Cartesian product:

1. Let A x B be the Cartesian Product of the given sets A and B. Then, two elements

(a, b) and (c, d) of A x B are equal if and only if a = c and b=d.

In other words, (a, b) = (¢, d) < {Ziz

2. Let A1 X A2 X... XAn be the Cartesian product of given sets As,...An.
Then, for (X1, X2...xn) and (y1, y2...yn) in Az X Az X....X An, we have that

(X1, X2,..., Xn) = (Y1, Y2,.., Yn) © Xi=yiVi=1,2.....n
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Chapter 2: Mappings

I. Definition and examples

1.1. Definition: Let X, Y be nonempty sets. A mapping with domain X and range Y,
is an ordered triple (X, Y, f) where f assigns to each xeX a well-defined f(x) €Y. The
f

statement that (X, Y, f) is a mapping is written by f: X > Y (or X —>Y).
Here, “well-defined” means that for each xe X there corresponds one and only one f(x) €Y.
A mapping is sometimes called a map or a function.

1.2. Examples:

1. : R - R; f(x) = sinx VxeR, where R is the set of real numbers,

2. . X > X; f(x) = x ¥x € X. This is called the identity mapping on the set X,
denoted by Ix

3. Let X, Y be nonvoid sets, and yo €Y. Then, the assignment f: X — Y; f(X) = yo VX

eX, is a mapping. This is called a constant mapping.
1.3. Remark: We use the notation f: X —>Y
X > f(x)
to indicate that f(x) is assigned to x.

f
1.4. Remark: Two mappings X — Y and Ug—> V are equal if and only if X = U,
Y=V, and f(x) = g(x) Vx € X. Then, we write f = g.

I1. Compositions

2.1. Definition: Given two mappings: f: X —> Y and g: Y — W (or shortly,

X —f> Y —g> W), we define the mapping h: X — W by h(x) = g(f(x)) ¥x € X. The mapping h
is called the composition of g and f, denoted by h = gof, that is, (gof)(x) = g(f(x)) VxeX.

2.2. Example: R f—> R+ _g) R., here R+ =0, o) and R.= (-0, 0].

f(x) = x? VxeR; and g(x) = -x VX €R+. Then, (gof)(x) = g(f(x)) = -x%

2.3. Remark: In genere:g:, fog # gof.

f
Example: R—> R —R; f(x)=x%g(X)= 2x+ 1 Vx eR.
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Then (fog)(x) = f(g(x)) = (2x+1)? ¥x € R, and (gof)(X) = g(f(x)) = 2x*> + 1 VX € R.
Clearly, fog = gof.

I11. Image and Inverse Images

Suppose that f: X — Y is a mapping.

3.1. Definition: For S — X, the image of S in a subset of Y, which is defined by
f(S) = {f(s)|seS} = {yeY|3seS with f(s) = y}

Example: f: R =R, f(x) = x? Vxe R.

S=[-1,2] = R; f(S) = {f(s) | se[-1, 2]} = {s?|se[-1, 2]} = [0, 4].

3.2. Definition: Let T < Y. Then, the inverse image of T is a subset of X, which is

defined by f1(T) = {xeX|f(x) eT}. So, xe f(T) if and only if f(x) eT.

Example: f: R\ {2} -R; f(x) = ~

’ ; vxeR\{2}.

S = (-0, -1] = R; FX(S) = {xeR\{2} | f(x) < -1}

x+1

= {xeR\{2}| 5 <-13}=[12,2).

X_

3.3. Definition: Let f: X — Y be a mapping. The image of the domain X, f(X), is
called the image of f, denoted by Imf. That is to say,

Imf = f(X) = {f(x)| xe X} = {y eY|IxeX with f(x) = y}.

3.4. Properties of images and inverse images: Let f: X — Y be a mapping; let A, B

be subsets of X and C, D be subsets of Y. Then, the following properties hold.
1) f(AUB) = f(A) Uf(B)
2) f(AnB) < f(A) N f(B)
3) f{(CuD) = f}(C) Uf(D)
4) fY(CnD) = f}(C) n fY(D)
PROOF: We shall prove (1) and (3), the other properties are left as exercises.
(1) : Since A c AuB and B < AUB, it follows that

f(A) < f(AUB) and f(B) — f(AUB).

10
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These inclusions yield f(A) Uf(B) < f(AUB).

Conversely, take any y € f(AUB). Then, by definition of an Image, we have that, there exists
an x € A UB, such that y = f(x). But, this implies that y = f(x) € f(A) (if x eA) or y=f(x) €
f(B) (if x €B). Hence, y € f(A) U f(B). This yields that f(AuUB) c f(A) U f(B). Therefore,
f(AUB) = f(A) U f(B).

(3): xefY(CUD) & f(x) € CuUD > (f(x) € C or f(x) eD)
& (x efY{(C) or x € FYD)) < x e FYC)UFL(D)
Hence, f1(CuD) = (D)) = FY(C)Uf(D).

IV. Injective, Surjective, Bijective, and Inverse Mappings

4.1. Definition: Let f: X — Y be a mapping.
a. The mapping is called surjective (or onto) if Imf =Y, or equivalently,
VyeY, IxeX such that f(x) = y.
b. The mapping is called injective (or one—to—one) if the following condition holds:
For x1,x2e X if f(x1) = f(x2), then x1 = xo.
This condition is equivalent to:
For x1,x2e X if x1#X2, then f(x1) # f(x2).
c. The mapping is called bijective if it is surjective and injective.
Examples:
1.R —f> R; f(x) =sinx Vx eR.
This mapping is not injective since f(0) = f(2x) = 0. It is also not surjective, because,
f(R)=Imf=[-1,1]#R

2.f: R —> [-1,1], f(x) = sinx ¥xeR. This mapping is surjective but not injective.
T T ) T T . L
3. | ——,=— | > R; f(x) = sinx Yxe| ——,— [. This mapping is injective but not
22 22
surjective.

4.f: [— g, } . This mapping is bijective.

} —[-1,1]; f(x) = sinxVxe [—

(ORI

r
2’

(ORI

11
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4.2. Definition: Let f: X — Y be a bijective mapping. Then, the mapping g: Y —» X
satisfying gof = Ix and fog = lv is called the inverse mapping of f, denoted by g = f.

For a bijective mapping f: X — Y we now show that there is a unique mapping g: Y —X

satisfying gof = Ixand fog = Iv.

In fact, since f is bijective we can define an assignment g : Y — X by g(y) = x if f(x) =Y.
This gives us a mapping. Clearly, g(f(x)) = x Vx € X and f(g(y)) = y VyeY. Therefore,
gof=Ix and fog = Iv.

The above g is unique is the sense that, if h: Y — X is another mapping satisfying hof
= Ix and foh = lv, then h(f(x)) = x = g(f(x)) Yx € X. Then, Vy e Y, by the bijectiveness of f,
3! xe X such that f(xX) =y = h(y) = h(f(x)) = g(f(x)) = g(y). This means that h = g.

|

This mapping is bijective. The inverse mapping f* : [-11] _);[_%’E} is denoted by

Examples:

T T

1.f; [— —,—} — [~ L1} f(x) = sinx vx e {—

N3

T
272 2’
f1 = arcsin, that is to say, f1(x) = arcsinx vx €[-1,1]. We also can write:

arcsin(sinx)=x Vx e [— g,g} ; and sin(arcsinx)=x Vx €[-1,1]

2. f: R —>(0,0); f(x) = e* VX eR.

The inverse mapping is f*: (0, ©) - R, f1(x) = Inx ¥x e (0,:0). To see this, take (fof 1)(X) =
el™ = x V¥x e(0,0); and (flof)(x) = Ine* = x ¥x eR.

12
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Chapter 3: Algebraic Structures and Complex Numbers

I. Groups

1.1. Definition: Suppose that G is non empty set and ¢: GXxG — G is a mapping.

Then, o is called a binary operation; and we will write ¢(a,b) = axb for each (a,b) € GxG.
Examples:

1) Consider G = R; “+” = “+” (the usual addition in R) is a binary operation defined

by
+: RxR—>R
(ab) —a+b
2) Take G = R; “«” =2 (the usual multiplication in R) is a binary operation defined
by
. RxR—>R
(ab) —a.b

3. Take G = {f: X — X| f is a mapping}:= Hom (X) for X = &.
The composition operation “o0” is a binary operation defined by:
0: Hom(X) x Hom(X) — Hom(X)
(f.g)—> fog
1.2. Definition:
a. A couple (G, *), where G is a nonempty set and * is a binary operation, is called an
algebraic structure.

b. Consider the algebraic structure (G, *) we will say that

(bl) * is associative if (a*b) *c = a*(b*c) Va, b,and cin G

(b2) * is commutative if axb = b*a Va, b €G

(b3) an element e € G is the neutral element of G if

exa = a*xe = a VaeG

13
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Examples:

1. Consider (R,+), then “+” is associative and commutative; and 0 is a neutral

element.

2. Consider (R, ), then “s” is associative and commutative and 1 is an neutral

element.

3. Consider (Hom(X), o), then “0” is associative but not commutative; and the

identity mapping Ix is an neutral element.

1.3. Remark: If a binary operation is written as +, then the neutral element will be

denoted by Og (or O if G is clearly understood) and called the null element.

If a binary operation is written as -, then the neutral element will be denoted by 1c

(or 1) and called the identity element.

1.4. Lemma: Consider an algebraic structure (G, *). Then, if there is a neutral

element e G, this neutral element is unique.

PROOF: Let ¢’ be another neutral element. Then, e = e*e’ because ¢’ is a neutral

element and e’ = e*e’ because e is a neutral element of G. Therefore e = ¢’.

1.5. Definition: The algebraic structure (G, *) is called a group if the following

conditions are satisfied:
1. = is associative
2. There is a neutral element ecG
3. Vae G,Ja’e Gsuchthata*a’=a’*xa=¢e
Remark: Consider a group (G, *).
a. If = is written as +, then (G,+) is called an additive group.
b. If * is written as ., then (G, .) is called a multiplicative group.
c. If * is commutative, then (G, ) is called abelian group (or commutative group).

d. For a € G, the element a’ G such that axa’ = a’+a=e, will be called the opposition

of a, denoted by
a’=al, called inverse of a, if * is written as « (multiplicative group)

a’ = - g, called negative of a, if = is written as + (additive group)

14
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Examples:

1. (R, +) is abelian additive group.

2. (R\{0}, ) is abel multiplicative group.

3. Let X be nonempty set; End(X) = {f: X — X | fis bijective}.

Then, (End(X), 0) is noncommutative group with the neutral element is Ix, where o is

the composition operation.
1.6. Proposition:
Let (G, *) be a group. Then, the following assertions hold.
1. For a €G, the inverse a* of a is unique.
2. For a, b, c € G we have that
axc=b*c=a=b
cxa=c*b=a=b
(Cancellation law in Group)
3. For a, x, b € G, the equation a*x = b has a unique solution x = a™«b.
Also, the equation x*a = b has a unique solution x = b*a!
PROOF:
1. Let a’ be another inverse of a. Then, a’*a = e. It follows that
(a’*a) *al=a’* (a*xal)=a’*e=2a’.
2. axC = a*b = alx (axc) alx (axb) = (a’xa) *c = (al+a) *b = exc=exb=c=h.
Similarly, cxa=b*a=c =b.

The proof of (3) is left as an exercise.

I1. Rings

2.1. Definition: Consider triple (V, +, ) where V is a nonempty set; + and . are
binary operations on V. The triple (V, +, .) is called a ring if the following properties are

satisfied:

15
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(V, +) is a commutative group
Operation “s” is associative
¥ a,b,c € V we have that (a + b) «Cc = a«.C + bec, and ce(a + b) = cea + Ceb

V has identity element 1y corresponding to operation “s” , and we call 1v the

multiplication identity.

If, in addition, the multiplicative operation is commutative then the ring (V, +, ») is called a

commutative ring.

2.2. Example: (R, +, «) with the usual additive and multiplicative operations, is a

commutative ring.

2.3. Definition: We say that the ring is trivial if it contains only one element, V =
{Ov}.

Remark: If V is a nontrivial ring, then 1y #Ov.

2.4. Proposition: Let (V, +, «) be a ring. Then, the following equalities hold.

1.a.0v =0Ov.a=0v

2.a+(b—c)=a.b—a.c, where b — c is denoted for b + (-c)

3. (b—)e«a=hea—cea

I11. Fields
3.1. Definition: A triple (V, +, ) is called a field if (V, +, «) is a commutative,

nontrivial ring such that, if a € V and a = Oy then a has a multiplicative inverse ae V.
Detailedly, (V, +, «) is a field if and only if the following conditions hold:

(V, +) is a commutative group,

the multiplicative operation is associative and commutative,

Va,b,ceV we have that (a + b) «C = a+C + a.b,

there is multiplicative identity 1v = Ov; and ifacV, a= Oy, thenJateV, ata=1y.
3.2. Examples: (R, +, ¢); (Q, +, «) are fields.

IV. The field of complex numbers

Equations without real solutions, such as x> + 1 = 0 or x> — 10x + 40 = 0, were

observed early in history and led to the introduction of complex numbers.

16
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4.1. Construction of the field of complex numbers: On the set R?, we consider

additive and multiplicative operations defined by

(@b)+ (cd)=(a+c,b+d)
(a,b)« (c,d) = (ac - bd, ad + bc)
Then, (R?, +, «) is a field. Indeed,

1) (R?, +,.) is obviously a commutative, nontrivial ring with null element (0, 0) and

identity element (1,0) = (0,0).

2) Let now (ab) # (0,0, we see that the inverse of (ab) is (c,d) =

( a b )since(ab)( a____ b j-(lO)
a? +b%  a%+b? ’ aZ+b%  a%+b? o

We can present R? in the plane

1(a.b)

(a,0)

We remark that if two elements (a,0), (c,0) belong to horizontal axis, then their sum
(@,0) + (c,0) = (a + ¢, 0) and their product (a,0)«(c,0) = (ac, 0) are still belong to the
horizontal axis, and the addition and multiplication are operated as the addition and
multiplication in the set of real numbers. This allows to identify each element on the
horizontal axis with a real number, that is (a,0) =a € R.

Now, consider i = (0,1). Then, i =i.i = (0, 1). (0, 1) = (-1, 0) = -1. With this notation,

we can write: for (a,b)e R?

(a,b) = (a,0) « (1,0) + (b,0)« (0,1) = a + bi

17
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We set C = {a + bi lab eR and i% = -1} and call C the set of complex numbers. It follows

from above construction that (C, +, ) is a field which is called the field of complex

numbers.
The additive and multiplicative operations on C can be reformulated as.
(atbi) + (c+di) = (a+c) + (b+d)i
(a+bi) « (c+di) = ac + bdi? + (ad + bc)i = (ac — bd) + (ad + bc)i
(Because i°=-1).
Therefore, the calculation is done by usual ways as in R with the attention that i2 = -1.

The representation of a complex number z € C as z = a + bi for a,beR and i% = -1, is called

the canonical form (algebraic form) of a complex number z.

4.2. Imaginary and real parts: Consider the field of complex numbers C. For ze C,

in canonical form, z can be written as
z=a+bi,wherea,b eRandi?=-1.

In this form, the real number a is called the real part of z; and the real number b is called the
imaginary part. We denote by a = Rez and b = Imz. Also, in this form, two complex numbers

z1 = a1 + bii and z> =ax+ byl are equal if and only if a1 = a; by = by, that is, Rez;=Rezz and Imz; = Imz.

4.3. Subtraction and division in canonical forms:

1) Subtraction: For z1 = a1 + b1l and z2 = a2 + bai, we have
Z1—-22=a1—az + (b1 — b2)i.
Example: 2 + 4i — (3 +2i) =-1 + 2i.

2) Division: By definition, b 2,(z;") (z2 #0).
Z2

. , a b, .
For z2 = az + bai, we have z,' = ——2— ———*—i. Therefore,
a, +b; a; +b,

LRl =(a, +byi). 2a2 - 2b2| — | We also have the following
a, +h, a, +b, a;+b,

. z, a +hi . .
practical rule: To compute —X = l—bl we multiply both denominator and numerator by
z, a,+h,i

a2 — boi, then simplify the result. Hence,

18
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a,+bi _a+bi a,—b,i _aa, +bb,+(ab —ab,)
a,+hi a,+b,i a,—b,i a +b’

2-7i 2-7i 8-3i -5-62i -5 62

8+3i 8+3i 8-3i 73 73 73

Example:

4.4. Complex plane: Complex numbers admit two natural geometric interpretations.

First, we may identify the complex number x + yi with the point (x,y) in the plane
(see Fig.4.2). In this interpretation, each real number a, or x+ 0.i, is identified with the point
(x,0) on the horizontal axis, which is therefore called the real axis. A number 0 + yi, or just
yi, is called a pure imaginary number and is associated with the point (0,y) on the vertical
axis. This axis is called the imaginary axis. Because of this correspondence between complex

numbers and points in the plane, we often refer to the xy-plane as the complex plane.

Imaginary axis

* (X3

F
Feal axiz

Figure 4.2

When complex numbers were first noticed (in solving polynomial equations),
mathematicians were suspicious of them, and even the great eighteen—century Swiss
mathematician Leonhard Euler, who used them in calculations with unparalleled proficiency,
did not recognize then as “legitimate” numbers. It was the nineteenth—century German
mathematician Carl Friedrich Gauss who fully appreciated their geometric significance and
used his standing in the scientific community to promote their legitimacy to other

mathematicians and natural philosophers.

The second geometric interpretation of complex numbers is in terms of vectors. The

complex numbers z = x + yi may be thought of as the vector xT +yf in the plane, which may

in turn be represented as an arrow from the origin to the point (x,y), as in Fig.4.3.
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Imaginary axis

. (3,3

i
E.eal axis

Fig. 4.3. Complex numbers as vectors in the plane

utr

Fig.4.4. Parallelogram law for addition of complex numbers

The first component of this vector is Rez, and the second component is Imz. In this
interpretation, the definition of addition of complex numbers is equivalent to the
parallelogram law for vector addition, since we add two vectors by adding the respective

component (see Fig.4.4).

4.5. Complex conjugate: Let z = x +iy be a complex number then the complex
conjugate z of z is defined by z = x —iy.
It follows immediately from definition that

Rez=x=(z+ z)/2;and Imz=y=(z- z)/2

We list here some properties related to conjugation, which are easy to prove.

1.2,+2,=2,+2, Vz1,22inC

2.2,.2,=12,.2 Vz1,22in C
1*=2 1*=2
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3. 4 =i Vz1,22in C
z, z,

4.ifa e Randz e C, then ez =a.z

5. For ze C we have that, z eR ifand only if z=z.

4.6. Modulus of complex numbers: For z =x + iy € C we define |z|:\/x2 + y2 :
and call it modulus of z. So, the modulus |z| is precisely the length of the vector which

represents z in the complex plane.

z:x+i.y:W

1z|=] OM |=+/x* +y?

4.7. Polar (trigonometric) forms of complex numbers:

The canonical forms of complex numbers are easily used to add, subtract, multiply or
divide complex numbers. To do more complicated operations on complex numbers such as

taking to the powers or roots, we need the following form of complex numbers.
Let we start by employ the polar coordination: For z = x + iy

) . X =rcosé
0#z=x+iy=0M =(xy). Then we can put { )
y=rsing

where r=|z| = \/X2 +y2 )

and 6 is angle between OM and the real axis, that is, the angle 6 is defined by

cosd =
X2 +y

B
X2 +y?
The equalities (1) and (I1) define the unique couple (r, 6) with 0<6<2r such that

X =rcosé
y=rsing

2

(1

sin@ =

. From this representation we have that
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z:x+iy:1/x2+y2{ X Y ]

N ™ I +y?
= |zl (coso + isin®).
Putting | z| = r we obtain
z = r(cos6+isingd).

This form of a complex number z is called polar (or trigonometric) form of complex
numbers, where r = |z| is the modulus of z; and the angle 6 is called the argument of z,

denoted by 6 = arg (2).

Examples:

1) z=1+i= ﬁ(%ﬂL i%)= ﬁ(cos§+ isin%}

2) 2=3-3/3i = 6(% - glj = 6(“’3(‘ EJ " ism(_ gD

Remark: Two complex number in polar forms z1 = r1(cos6; + isinB1); z> = r2(cos62 +

isin®,) are equal if and only if

1‘1 =I‘2
vk eZ.
91 :92 +2kTC

4.8. Multiplication, division in polar forms:

We now consider the multiplication and division of complex numbers represented in polar

forms.

1) Multiplication: Let z1 = r1(cos01 + isin01) ; z2 = r2(cosO2+isinOz)
Then, z1.z2 = r1r2[c0s01C0S02 - SiNO1SiNO2+i(C0SO1SINO2 + C0sO25IN61)]. Therefore,
1.2 = r1r2[cos(01+02) + isin(01+62)]. (4.2)

It follows that |z1.z2|=1z1].1z2| and arg (z1.22) = arg(z1) + arg(z2).

. z
2) Division: Take z = - < z, = 2.2, = | z1| = |z].|z2] (for 2, #0)
22
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Moreover, arg(z1) = argz+argz, < arg(z) =arg(z1) — arg(z>).

Therefore, we obtain that, for z1=r1(cos0:1+isin01) and z2 = r2(cos6, + isin6) 0.

We have that 4 = B [cos(61-62) + isin(61-62)]. 4.2)
22 r2
Example: 71 =-2+2i; 22 =3i.

We first write z1 = 2~/2 (cos?’Tﬂ+ isin%rj; z, = 3(cos%+isin%j

Therefore, 1.2 = Gﬁ(cossjﬂﬂsin%J

z 2\/5( n 571)

-1 COS— +isin—
z, 4 4
3) Integer power: for z = r(cos6 + ising), by equation (4.1), we see that

7% = r?(c0s20 + isin20).

By induction, we easily obtain that z" = r"(cosn6 + isinn6) for all neN.

Now, take z! = (cos(=6) +isin(-0)) = r *(cos(-0) +isin(-0)).

1
z

= |

Therefore z2 = (z‘1 )2 =r?(cos(-26) +isin(-26)).
Again, by induction, we obtain: z" = r"(cos(-n6) + isin(-n6)) YneN.
This yields that z" = r"(cosn6 + isinn®) for all n Z.
A special case of this formula is the formula of de Moivre:

(cosO + isin®)" = cosnd + isinnd VneN.
Which is useful for expressing cosn6 and sinn® in terms of coso and sino.

4.9. Roots: Given z €C, and n eN* = N\ {0}, we want to find all w €C such that w" = z.

To find such w, we use the polar forms. First, we write z = r(coso + isin6) and w = p(cose +

ising). We now determine p and ¢. Using relation w" = z, we obtain that
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P'(cosne + isinng) = r(cosO + isin0d)

R p =4r (realpositive rootof r)
R
{n(p:9+2k7r;kez ¢:‘9+2k”;kez

Note that there are only n distinct values of w, corresponding to k =0, 1..., n-1. Therefore, w

is one of the following values

{%(cosw + ismwj‘k =0,1...,n— 1}
n

n

For z = r(cosO + isinB) we denote by

1z = {Q/F(COSQJr k7 L isin Ot ZK”j |k=012..n —1}

n n

and call ¥/z the set of all n" roots of complex number z.

For each w e C such that w" = z, we call w an n" root of z and write w e 1z .

Examples:

1.31= %/1(0030 +isin0) (complex roots)

= 1(0052‘(—”+ isin2k—”j| k=012
3 3

_{.1 NEP \/5}
=<l—=+— —5——1

L
2 2 2

2. Square roots: For Z = r(coso+isind) € C, we compute the complex square roots

Jz = Jr(cosd+ising) =

:{\/r(coseJrZZkﬂ +isin 9+22k”j | k = 0,1}

= {\/F(cos§+isin%);—ﬁ(cosgﬂsingj}. Therefore, for z # 0; the set Jz

contains two opposite values {w, -w}. Shortly, we write Jz=+w (for w? = 2).

Also, we have the practical formula, for z = x + iy,
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Jz= i{ %(]z| + x)+[(sign y).i\/%(jT—x)ﬂ (4.3)

L if y=>0
where signy = | _4 if y<0-
3. Complex quadratic equations: az> + bz + ¢ = 0; a,b,c eC; a = 0.
By the same way as in the real-coefficient case, we obtain the solutions zi, =

—-btw
2a

where w? = A = b?- 4aceC.

Concretely, taking z2 — (5+i)z + 8 + i = 0, we have that A = -8+6i. By formula (4.3),

we obtain that
VA =tw = +(1 + 3i)

S5+1x(1+31
Then, the solutions are z12 = 2( ) orzz1=3+2i;22=2-1.

We finish this chapter by introduce (without proof) the Fundamental Theorem of

Algebra.

4.10. Fundamental Theorem of Algebra: Consider the polynomial equation of

degree nin C:
anX"+ anaX"t+. +aix+a=0;a eC Vi=0, 1, ...n. (a=0) (4.4)

Then, Eq (4.4) has n solutions in C. This means that, there are complex numbers X,

X2....Xn, such that the left-hand side of (4.4) can be factorized by

anX" + an-1X" 1+ L+ ag = an(X - X1)(X - X2)...(X - Xn).
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Chapter 4: Matrices

I. Basic concepts
Let K be a field (say, K=R or C).

1.1. Definition: A matrix is a rectangular array of numbers (of a field K) enclosed in

brackets. These numbers are called entries or elements of the matrix

2 04 8 6 2 3
Examples 1: [ }; { } [1 5 4]; [ }
5 =32 0 1 1 8

Note that we sometimes use the brackets ( . ) to indicate matrices.
The notion of matrices comes from variety of applications. We list here some of them

Sales figures: Let a store have products I, Il, I1l. Then, the numbers of sales of each

product per day can be represented by a matrix

Monday Tuesday Wednesday Thursday Friday

|I| 10 20 15 3 4
o0 12 7 3 5
0 9 6 8 9

- Systems of equations: Consider the system of equations

S5x =10y +z=2
6x -3y —-2z=0
2x+y—4z=0

Then the coefficients can be represented by a matrix

5 -10 1
6 -3 -2
2 1 4

We will return to this type of coefficient matrices later.

1.2. Notations: Usually, we denote matrices by capital letter A, B, C or by writing the

general entry, thus

A =[ai], soon...
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By an mxn matrix we mean a matrix with m rows (called row vectors) and n

columns (called column vectors). Thus, an mxn matrix A is of the form:

a; 4a, ... q,

a a .ooa
A=|] 21 . 22 . . 2n

a a a

ml m2 mn

Example 2: On the example 1 above we have the 2x3; 2x1; 1x3 and 2x2 matrices,

respectively.

In the double subscript notation for the entries, the first subscript is the row, and the
second subscript is the column in which the given entry stands. Then, a3 is the entry in row

2 and column 3.

If m =n, we call A an n-square matrix. Then, its diagonal containing the entries ai1,

a2,..., ann IS called the main diagonal (or principal diagonal) of A.

1.3. Vectors: A vector is a matrix that has only one row — then we call it a row vector,
or only one column - then we call it a column vector. In both case, we call its entries the

components. Thus,
A =[araz...an] — row vector
b,
B=|.” | - column vector.

b

n

1.4. Transposition: The transposition AT of an mxn matrix A = [aj] is the nxm
matrix that has the first row of A as its first column, the second row of A as its second

column,..., and the m" row of A as its m" column. Thus,

a11 a12 aln all a'21 e aml
a, a, .. a a, a a
forA=| % # 7 " |wehavethatAT=|® # 7 ™
aml am2 amn aln a2n e amn
1 4
1 2 3| ¢
Example 3: A= A =12 0
4 0 7
3 7
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I1. Matrix addition, scalar multiplication

2.1. Definition:

1. Two matrices are said to have the same size if they are both mxn.

2. For two matrices A = [ajk]; B = [bjk] we say A = B if they have the same size and
the corresponding entries are equal, that is, a11 = b11; ai2 = b1, and so on...

2.2. Definition: Let A, B be two matrices having the same sizes. Then their sum,

written A + B, is obtained by adding the corresponding entries. (Note: Matrices of different
sizes can not be added)

2 3 -1 2 05
Example: For A = ;B =
1 4 2 71 4

2+2 340 (-1)+5 4 3 4
A+B= =
1+7 4+1 2+4 8 5 6

2.3. Definition: The product of an mxn matrix A = [aj] and a number c (or scalar c),
written cA, is the mxn matrix cA = [caj] obtained by multiplying each entry in A by c.

Here, (-1)A is simply written —A and is called negative of A; (-k)A is written — kA,
also A +(-B) is written A — B and is called the difference of A and B.

Example:
2 5 4 10 -2 =5
ForA=|—-1 4 |wehave2A=|-2 & |;and -A=| 1 —-4]|;
3 -7 6 14 -3 7
0O 0
0A=|0 O
0O 0

2.3. Definition: An mxn zero matrix is an mxn matrix with all entries zero — it is
denoted by O.

Denoted by Mmxn(R) the set of all mxn matrices with the entries being real numbers.
The following properties are easily to prove.
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2.4. Properties:

1. (Mmxn(R), +) is a commutative group. Detailedly, the matrix addition has the
following properties.
(A+B) + C=A + (B+C)
A+B=B+A
A+O0O=0+A=A
A+ (-A) =0 (written A-A=0)
2. For the scalar multiplication we have that (o, B are numbers)
o(A+B)=aA+aB
(a+B)A = aA + BA
(aB)A = a(BA) (written apA)
1A=A.
3. Transposition: (A+B)"T = AT+BT

(aA)=aAT.

I11. Matrix multiplications

3.1. Definition: Let A = [ajx] be an mxn matrix, and B = [bjk] be an nxp matrix. Then,

the product C = A.B (in this order) is an mxp matrix defined by

C = [cjk], with the entries:
Cik = ajibik + @jbak+ ...+ ajnbrk = D a; b, wherej=1,2,...,m;k=12,...p.
1=1

That is, multiply each entry in j row of A by the corresponding entry in the k"
column of B and then add these n products. Briefly, “multiplication of rows into columns”.

We can illustrate by the figure
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B C

Note: AB is defined only if the number of columns of A is equal to the number of

rows of B.

1
Example: | 2
3
6 1
=6 8 .
6 15

4, & 1x2+4x1 1x5+4x(-1)
2 L J: 2x2+2x1 2><5+2><(—1) =
0 3x2+0x (=) 3x5+0x(-1)

1 4

2 5
Exchanging the order, then L J 2 2 | is not defined

Remarks:

3 0

1) The matrix multiplication is not commutative, that is, AB #BA in general.

Examples:

0 1
A= B=

AB =0 and BA =

, then

. Clearly, AB=BA.

2) The above example also shows that, AB = O does not imply A=0OorB=0.
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3.2 Properties: Let A, B, C be matrices and k be a number.
a) (kA)B = k(AB) = A(kB) (written k AB)
b) A(BC) = (AB)C (written ABC)
c) (A+B).C=AC +BC
d) C (A+B) =CA+CB
provided, A,B and C are matrices such that the expression on the left are defined.
IV. Special matrices
4.1. Triangular matrices: A square matrix whose entries above the main diagonal are

all zero is called a lower triangular matrix. Meanwhile, an upper triangular matrix is a square

matrix whose entries below the main diagonal are all zero.

1 2 -1
Example:  A=|0 0O 4 |- Upper triangular matrix
0 0 3
1 0 0
B=|3 7 0] - Lower triangular matrix
2 00

4.2. Diagonal matrices: A square matrix whose entries above and below the main

diagonal are all zero, that is ajx = 0 Vj=K is called a diagonal matrix.

I 0 0
Example: [0 0 O
0 0 3

4.3. Unit matrix: A unit matrix is the diagonal matrix whose entries on the main
diagonal are all equal to 1. We denote the unit matrix by I (or 1) where the subscript n

indicates the size nxn of the unit matrix.

1 00
1 O
Example:1s=|{0 1 O|;l,=
0 1
0 0 1

31



Nguyen Thieu Huy, Lecture on Algebra

Remarks: 1) Let A € Mmxn (R) — set of all mxn matrix whose entries are real

numbers. Then,
Aln =A= ImA

2) Denote by Mn(R) = Mnxn(R), then, (Mn(R), +, «) is @ noncommutative ring where

+ and . are the matrix addition and multiplication, respectively.
4.4. Symmetric and antisymmetric matrices:

A square matrix A is called symmetric if AT=A, and it is called anti-symmetric (or

skew-symmetric) if AT =-A.

4.5. Transposition of matrix multiplication:

(AB)" = BTAT provided AB is defined.

4.6. A motivation of matrix multiplication:

Consider the transformations (e.g. rotations, translations...)

¥z

1
N .
/ "
=

Xy =W, +a;,W,

The first transformation is defined by { 0]

Xy =a,y W, +a,W,

i ) X1 aj; ap || W Wi
or, in matrix form { } = { =A )
X2 Ay App || Wy Wo

The second transformation is defined by { ()}

. . Yi| [P b X X
or, in matrix form = =B .
Y2 by by | X5 X2
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To compute the formula for the composition of these two transformations we
substitute (1) in to (I1) and obtain that

Cy = b11a11 + b12a21

C,, = by, +b,a,

Y2 = CyW; +CppW, Cy =byay, +byay, .
Cp =byay, +byay

c c W
This yields that: C = { i 12} =BA; and FH } = BA{ ! }
Ca €22 Y2 Wo

However, if we use the matrix multiplication, we obtain immediately that

MMM

Therefore, the matrix multiplication allows to simplify the calculations related to the

composition of the transformations.

V. Systems of Linear Equations

We now consider one important application of matrix theory. That is, application to
systems of linear equations. Let us start by some basic concepts of systems of linear

equations.

5.1. Definition: A system of m linear equations in n unknowns X1, X2,...,Xn IS a Set of

equations of the form

A X, +a,X, +..+a,X, =b

1n“*n
Ay X, + 85X, +. 3y, X, =D, 5.1)
A X+, X, +o A, X, =D,

Where, the ajk; 1<j<m, 1<k<n, are given numbers, which are called the coefficients of

the system. The bi, 1 <i <m, are also given numbers. Note that the system (5.1) is also called

a linear system of equations.

If bi, 1<i<m, are all zero, then the system (5.1) is called a homogeneous system. If at

least one by is not zero, then (5.1) in called a nonhomogeneous system.
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A solution of (5.1) is a set of numbers xi, Xz...,xn that satisfy all the m equations of
Xl

Xz

(5.1). A solution vector of (5.1) is a column vector X = whose components constitute a

X

n

solution of (5.1). If the system (5.1) is homogeneous, it has at least one trivial solution x; =
0,x2=0,...,.Xn = 0.

5.2. Coefficient matrix and augmented matrix:

We write the system (5.1) in the matrix form: AX =B,
Xl bl
_ . ) X
where A = [aj] is called the coefficient matrix; X = | . ?landB = : ? | are column vectors.

X b

n m

The matrix A = [AEB] is called the augmented matrix of the system (5.1). A is

obtained by augmenting A by the column B. We note that A determines system (5.1)
completely, because it contains all the given numbers appearing in (5.1).

V1. Gauss Elimination Method

We now study a fundamental method to solve system (5.1) using operations on its
augmented matrix. This method is called Gauss elimination method. We first consider the

following example from electric circuits.
6.1. Examples:

Example 1: Consider the electric circuit

20 ohms Q 10 ohms

"WA——WW\

i
80 volts 10 ohms 90 volts
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Label the currents as shown in the above figure, and choose directions arbitrarily. We

use the following Kirchhoffs laws to derive equations for the circuit:

+ Kirchhoff’s current law (KCL) at any node of a circuit, the sum of the inflowing

currents equals the sum of the outflowing currents.

+ Kirchhoff’s voltage law (KVL). In any closed loop, the sum of all voltage drops

equals the impressed electromotive force.

Applying KCL and KVL to above circuit we have that

Node P:i1—i2+1i3=0

Node Q:-i1+i2—i3=0

Right loop: 10i2 + 25i3 =90

Left loop: 20i1 + 10i2 = 80

Putting now X1 = i1; X2 = i2; X3 = i3 we obtain the linear system of equations
X; —X, +x3=0
—X; +X, —x3=0
10x, +25x5 =90
20x, +10x, =80

(6.1)

This system is so simple that we could almost solve it by inspection. This is not the
point. The point is to perform a systematic method — the Gauss elimination — which will
work in general, also for large systems. It is a reduction to “triangular form” (or, precisely,
echelon form-see Definition 6.2 below) from which we shall then readily obtain the values of

the unknowns by “back substitution”.

We write the system and its augmented matrix side by side:

Equations Augmented matrix:
Pivot — X1 | -X2+x3=0 1 -1 1 0 ]
~ |- 1 1 -1 O
Eliminate — -X1 | tX2-X3=0 A = 0 10 25 90
10x2+25x3 = 90 120 10 0 80]

20x1 | +10x2 = 80
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First step: Elimination of x:

Call the first equation the pivot equation and its x; — term the pivot in this step, and
use this equation to eliminate x: (get rid of x1) in other equations. For this, do these

operations.

Add the pivot equation to the second equation;

Subtract 20 times the pivot equation from the fourth equation.

This corresponds to row operations on the augmented matrix, which we indicate behind the

new matrix in (6.2). The result is

X; —X, +Xx3=0
0=0

10x, +25x5 =90
30x, —20x5 =80

-1 1 0

0 0 0 Row2 + Rowl — Row2
10 25 90|Row4-20xRowl — Row4d
30 -20 80

(6.2)

o O O B+

Second step: Elimination of xz

The first equation, which has just served as pivot equation, remains untouched. We
want to take the (new) second equation as the next pivot equation. Since it contain no Xo-
term (needed as the next pivot, in fact, it is 0 = 0) — first we have to change the order of
equations (and corresponding rows of the new matrix) to get a nonzero pivot. We put the

second equation (0 = 0) at the end and move the third and the fourth equations one place up.

Weget Corresponding to
X1- X2 + x3=0 —1 1 1 O_
Pivot — 10x> | +25x3 = 90 0 10 25 90
0 30 -20 80
Eliminate — 30x> | -20x3 =80 0 0 0 0
0=0

To eliminate X2, do

Subtract 3 times the pivot equation from the third equation, the result is
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X1—X2+Xx3=0 1 -1 1 0
0 10 25 90

10x2 + 25%x3 =90 Row3 — 3x Row2 — Row3 (6.3)
0 0 -95 -190

-95x3 =-190 0 0 0 0

0=0

Back substitution: Determination of x3, X2, X1.

Working backward from the last equation to the first equation the solution of this

“triangular system” (6.3), we can now readily find xs, then x> and then x:

-95x3 = -190 I3=X3= 2 (amperes)
10x2 + 25x3 =90 - i2 = X2 = 4 (amperes)
X1 —X2+Xx3=0 i1 = X1 = 2 (amperes)

Note: A system (5.1) is called overdetermined if it has more equations than
unknowns, as in system (6.1), determined if m = n, and underdetermined if (5.1) has fewer

equations than unknowns.

Example 2: Gauss elimination for an underdetermined system. Consider

3X, +2X, +2X; —5X, =8
6x, +15x, +15%, —54x, =27
12x, —3x, —3x; +24x, =21

3 2 2 -5 38
The augmented matrixis: | 6 15 15 -54 27
12 -3 -3 24 21

1% step: elimination of x1

3 2 2 -5 8
0 11 11 -44 11
0 -11 -11 44 -11

Row2 — 2 x Rowl —» Row?2
Row3—-4x Rowl — Row3
2"dstep: Elimination of x;

3 2 2 -5 8
0 11 11 -44 11| Row3-Rowl — Row3
0O 0 O 0 0

Back substitution: Writing the matrix into the system we obtain
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3X1+2X2+ 2X3 —5X4 =8
11x2 + 11X3 — 44x4 = 11
We can divide both sides of the second equation to obtain equivalent system:
X1+ 2X2+ 2X3 —5%x4 =8
X2+ Xz—4x4 =1
From the second equation, x2 = 1 — x3 + 4x4. From this and the first equation, we
obtain that x1 = 2 — X4. Since X3, X4 remain arbitrary, we have infinitely many solutions, if we

choose a value of x3 and a value of x4, then the corresponding values of x; and x: are

uniquely determined.

Example 3: What will happen if we apply the Gauss elimination to a linear system
that has no solution? The answer is that in this case the method will show this fact by

producing a contradiction — for instance, consider
3x; +2X5 +X3 =3
2X1 + X2 + X3 - 0

3213
The augmented matrixis |2 1 1 O
6 2 4 6

3 2 1 3 3 2 1 3

Slo 22 o500 2L
3 3 3

0 -2 2 0 0 0 0 12

The last row correspond to the last equation which is 0 = 12. This is a contradiction

yielding that the system has no solution.

The form of the system and of the matrix in the last step of Gauss elimination is

called the echelon form. Precisely, we have the following definition.
6.2. Definition: A matrix is of echelon form if it satisfies the following conditions:
i) All the zero rows, if any, are on the bottom of the matrix

ii) In the nonzero row, each leading nonzero entry is to the right of the leading

nonzero entry in the preceding row.
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Correspondingly, A system is called an echelon system if its augmented matrix is an

echelon matrix.

1 -2 3 -4 5

0 2 1 5 7. .
Example: A = is an echelon matrix

0 0 O 8

0 0 O 0

6.3. Note on Gauss elimination: At the end of the Gauss elimination (before the back

substitution) the reduced system will have the echelon form:

a11X1 + aXe + ... + A1nXn =b;
azjzsz +...+a,,X, :b2
a; X; +e.tanX, =b
0 = br+1
0 =0
0 =0

wherer<m;1<j;<..<jrandaun=#0; &, #0,.,a; #0.

From this, there are three possibilities in which the system has

a) no solution if r < m and the number BM is not zero (see example 3)

b) precisely one solution ifr=nand b, ., if present, is zero (see example 1)

r+l?

c) infinitely many solution if r<n and b, ,, if present, is zero.
Then, the solutions are obtained as follows:
+) First, determine the so—called free variables which are the unknowns that

are not leading in any equations (i.e, x is free variable < xx ¢{x1, X; ... X; }

+) Then, assign arbitrary values for free variables and compute the remain

unknowns x1, X; ..., X; by back substitution (see example 2).

iz

6.4. Elementary row operations:
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To justify the Gauss elimination as a method of solving linear systems, we first

introduce the two related concepts.

Elementary operations for equations:
1. Interchange of two equations
2. Multiplication of an equation by a nonzero constant
3. Addition of a constant multiple of one equation to another equation.
To these correspond the following
Elementary row operations of matrices:
1. Interchange of two rows (denoted by Ri <> Rj)
2. Multiplication of a row by a nonzero constant: (kRi — Ri)
3. Addition of a constant multiple of one row to another row
(Ri + kRj > Ri)
So, the Gauss elimination consists of these operations for pivoting and getting zero.

6.5. Definition: A system of linear equations S; is said to be row equivalent to a
system of linear equations S if S1 can be obtained from S by (finitely many) elementary

row operations.

Clearly, the system produced by the Gauss elimination at the end is row equivalent to
the original system to be solved. Hence, the desired justification of the Gauss elimination as
a solution method now follows from the subsequent theorem, which implies that the Gauss

elimination yields all solutions of the original system.

6.6. Theorem: Row equivalent systems of linear equations have the same sets of

solutions.

PROOF: The interchange of two equations does not alter the solution set. Neither
does the multiplication of the new equation a nonzero constant ¢, because multiplication of
the new equation by 1/c produces the original equation. Similarly for the addition of an
equation aEj to an equation Ej, since by adding -aEi to the equation resulting from the

addition we get back the original equation.

40



Nguyen Thieu Huy, Lecture on Algebra

Chapter 5: Vector spaces

I. Basic concepts
1.1. Definition: Let K be a field (e.g., K =R or C), V be nonempty set. We endow
two operations as follows.
Vector addition +. VxV->V
(u,v) bu+v
Scalar multiplication : KxV >V
(A, V) > AV
Then, V is called a vector space over K if the following axioms hold.
D@u+v)+w=u+(v+w)forallu,v,w eV
2) u+v=v+uforallu,veV
3) there exists a null vector, denoted by O € V, suchthatu+ O =uforallu,v € V.

4) for each u € V, there is a unique vector in V denoted by —u such thatu + (-u) = O

(written: u—u = 0)
5)Mutv)=au+Arvforall A e K;u,veV
6) (At u=Au+puforal i, ue K;ueV
7) Muu) = (Ap)u forall A, p e K;u e V
8) 1.u = u for all u €V where 1 is the identity element of K.
Remarks:
1. Elements of V are called vectors.
2. The axioms (1) (4) say that (V, +) is a commutative group.

1.2. Examples:

1. Consider R® = {(x, y, 2)Ix, y, z € R} with the vector addition and scalar

multiplication defined as usual:
(X1, Y1, 1) + (X2, Y2, 22) = (X1 + X2, Y1 + Y2, Z1 + Z2)

AMX, Y, Z) = (AX, AY, A2) ; A € R.
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Thinking of R? as the coordinators of vectors in the usual space, then the axioms (1)
— (8) are obvious as we already knew in high schools. Then R? is a vector space over R with
the null vector is O = (0,0,0).

2. Similarly, consider R" = {(x1, Xz,....Xn)|xi eR Vi = 1, 2...n} with the vector

addition and scalar multiplication defined as
(X1, X2,....Xn) + (Y1, Y2,...Yn) = (X1 + Y1, X2 + Y2, ..., Xn + Yn)

MX1, X2,..., Xn) = (AX1, AX2...., AXn) ; A € R. It is easy to check that all the axioms (1)-
(8) hold true. Then R" is a vector space over R. The null vector is O = (0,0,...,0).

3. Let Mmxn (R) be the set of all mxn matrices with real entries. We consider the
matrix addition and scalar multiplication defined as in Chapter 4.11. Then, the properties 2.4
in Chapter 4 show that Mmxn (R) is a vector space over R. The null vector is the zero matrix
0.

4. Let P[x] be the set of all polynomials with real coefficients. That is, P[x] = {ao +
aix + ... + anx"|ag, a1,....an € R; n =0, 1, 2...}. Then P[x] in a vector space over R with
respect to the usual operations of addition of polynomials and multiplication of a polynomial

by a real number.

1.3. Properties: Let V be a vector space over K, A, u €K, X, y €V. Then, the

following assertion hold:

A=0
x=0

1. .>x=0 <:{

2. (A-p)X = AX - ux

3 AMX-Yy)=AxX-py

4. (-A)X = - AX

PROOF:

1. “<=": Let A =0, then Ox = (0+0)x = Ox + Ox
Using cancellation law in group (V, +) we obtain: Ox = O.

Let x = O, then LO = A(O +0O) = A0 + A0. Again, by cancellation law, we have that L0 = O.

“=": Let Ax = O and A=0.
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Then 311 multiplying At we obtain that A1(AX) =A0=0= A \)x=0=1x=0
=x=0.

2. 20X = (A-p+p)X = (A-p)X + px
Therefore, adding both sides to - ux we obtain that Ax - ux = (A-p)X

The assertions (3), (4) can be proved by the similar ways.

I1. Subspaces

2.1. Definition: Let W be a subset of a vector space V over K. Then, W is called a
subspace of V if and only if W is itself a vector space over K with respect to the operations

of vector addition and scalar multiplication on V.

The following theorem provides a simpler criterion for a subset W of V to be a

subspace of V.

2.2. Theorem: Let W be a subset of a vector space V over K. Then W is a subspace

of V if and only if the following conditions hold.
1. OeW (where O is the null element of V)
2. W is closed under the vector addition, that is VuveW = u+v eW
3. W is closed under the scalar multiplication, that is Yu eW, VA eK =Au e W

Proof: “=” let W < V be a subspace of V. Since W is a vector space over K, the

conditions (2) and (3) are clearly true. Since (W,+) is a group, w = &. Therefore, 3x € W.
Then, 0x =0 eW.

“«<=": This implication is obvious: Since V is already a vector space over K and W
V, to prove that W is a vector space over K what we need is the fact that the vector addition
and scalar multiplication are also the operation on W, and the null element belong to W.
They are precisely (1); (2) and (3).

2.3. Corollary: Let W be a subset of a vector space V over K. Then, W is a subspace

of V if and only if the following conditions hold:
(i) OeW

(i) for all a, b eK and all u, v eW we have that au+bveW.

43



Nguyen Thieu Huy, Lecture on Algebra

Examples: 1. Let O be a null element of a vector space V is then {O} is a subspace
of V.

2. Let V=R% M = {x, y, 0)|x,yeR} is a subspace of R®, because, (0,0,0) €M and
for (x1,y10) and (x2,y2,0) in M we have that A(X1, y1,0) + p(X2,y2,0) = (AX1 + puxz, Ay1 + p2, 0)
e M VYieR.

3. Let V = Muxa(R); and A €Mmxn(R). Consider M = {X eMna(R)|AX = 0}. For X3,
X2 eM, it follows that A(AX1 + uX2) = AAX1 + pAXz = O + O = O. Therefore, A X1 + uXz €
M. Hence M is a subspace of Mnxa(R).

I11. Linear combinations, linear spans

3.1 Definition: Let V be a vector space over K and let vy, v2...,va €V. Then, any
vector in V of the form aivi + a2ve + ...+onvn for ag,o0...an €R, is called a linear

combination of vy, va...,vn. The set of all such linear combinations is denoted by
Span{vi, Vz2...vn} and is called the linear span of vi, v2...vn.
That is, Span {v1, Va...vn} = {oavi + a2v2 + ...+ anval ai €K Vi=1,2,...n}

3.2. Theorem: Let S be a subset of a vector space V. Then, the following assertions
hold:

1) The Span S is a subspace of V which contains S.
ii) If W is a subspace of V containing S, then Span S c W.

3.3. Definition: Given a vector space V, the set of vectors {us, u....u/} are said to
span V if V = Span {u1, uz.., un}. Also, if the set {us, uz....us} spans V, then we call it a

spanning set of V.
Examples:
1.5 ={(1,0,0); (0, 1, 0)}c R®.
Then, span S = {x(1, 0, 0) + y(0, 1, 0) Ix,y eR} = {(x.y.0)|x,y eR}.
2.5 ={(1,0,0), (0,1,0), (0,0,1)} cR®. Then,
Span S = {x(, 0, 0) + y(0, 1, 0) + (0, 0, 1) | x,y,z R}
={(x,y,0)Ix,y,zeR}=R?

Hence, S = {(1, 0, 0); (0, 1, 0) ; (0, 0, 1)} is a spanning set of R®
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IV. Linear dependence and independence

4.1. Definition: Let V be a vector space over K. The vectors vi, V2...vm €V are said

to be linearly dependent if there exist scalars ou, o2, ...,am belonging to K, not all zero, such
that

oV1 + apVe + ...+ oamVm = O. 4.1)
Otherwise, the vectors v, Vvz..., vm are said to be linear independent.

We observe that (4.1) always holds if a1 = a2 = ...=am = 0. If (4.1) holds only in this

case, that is,
oavitove + ...t oamVm=0 = o1 = a2 =...=am =0,
then the vectors vi, vz...vm are linearly independent.

If (4.1) also holds when one of a, a2, ...,am IS not zero, then the vectors vi, vo...vm

are linearly dependent.

If the vectors vi, v2...vm are linearly independent; we say that the set {vi, v2...vm} is
linearly independent. Otherwise, the set {vi1, v2...vm} is said to be linearly dependent.

Examples:

1) u=(1,-1,0); v=(1, 3, - 1); w = (5, 3, -2) are linearly dependent since 3u + 2v —w =
(0, 0, 0). The first two vectors u and v are linearly independent since:

AU+ Av = (0, 0, 0) = (A1t+A2, -A1 + 3h2, - A2) = (0, 0, 0)

=M =x=0.

2)u=(6,2,3,4);v=(0,5,-3,1);w=(0,0, 7, - 2) are linearly independent since
x(6, 2, 3,4) +y(0,5, - 3,1) +2(0,0,7,-2) = (0, 0, 0)

= (6x—2x +5y; 3x -3y + 7z; 4x +y —22) = (0, 0, 0)

6x=0
=2x+35y=0 =>x=y=z=0
4x +y—-2z=0

4.2. Remarks: (1) If the set of vectors S = {v1...,vm} contains O, say vi = O, then S is

linearly dependent. Indeed, we have that 1.vi + 0.v2 + ...+ 0.vm=1.0+0+...+0=0

(2) Let v eV. Then v is linear independent if and only if v = O.
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(3) If S = {vi,..., vm} is linear independent, then every subset T of S is also linear
independent. In fact, let T = {Vki1, Vko,...vkn} Where {Kk1, ko,...kn} < {1, 2...m}. Take a linear

combination akiVk1 + ... + oaknVkn=0. Then, we have that

OkiVkL + ... + OknVkn + Z:O.Vi =0
ie{l,2.. MPky ky ko }

This yields that o1 = oz = ... = axn = 0 since S in linearly independent. Therefore, T
is linearly independent.
Alternatively, if S contains a linearly dependent subset, then S is also linearly dependent.

(4) S ={vi; ... vm} is linearly dependent if and only if there exists a vector vk €S

such that vk is a linear combination of the rest vectors of S.

PROOF. “=" since S is linearly dependent, there are scalars A1, A2, ... Am, Not al
zero, say Ak = 0, such that.

ixivi =0= AV = i(‘ 7“1)"1
i=1 k=i=1

m m
“< If there is vk € Ssuch that vk = D a;v; , thenvk- D" av; = 0. Therefore, there
k#i=1 k=i=1

exist o1, ok = 1, ok+1, ... am NOt all zero (since ok = 1) such that
m
- Z(XiVi +Vk :0
k=i=1
This means that S is linearly dependent.

(5) If S ={v1,...vm} linearly independent, and X is a linear combination of S, then this

m m
combination is unique in the sense that, if x = > o, v; = > o'; v;, then oi = o Vi =
k=1 i=1

1,2,....m.

(6) If S = {va,...vm} is linearly independent, and y € V such that {vi, V2...vm, Y} IS

linearly dependent then y is a linearly combination of S.
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4.3. Theorem: Suppose the set S = {vi...vm}of nonzero vectors (m >2). Then, Sis
linearly dependent if and only if one of its vector is a linear combination of the preceding

vectors. That is, there exists a k > 1 such that vk = ai1v1 + a2 + ...+ ak-1Vk-1

PROOF: “=" since {vi, V2...vm} are linearly dependent, we have that there exist

m
scalars ai, az..., am, not all zero, such that Zaivi =0. Let k be the largest integer such that

i=1
) a ap_
ak = 0. Then |fk>1,vk:——1v1...— K 1Vk_1
ag ag
Ifk=1=vi=0sinceaz =as=... =am = 0. This is a contradiction because vi1 = 0.

“<=": This implication follows from Remark 4.2 (4).
An immediate consequence of this theorem is the following.

4.4. Corollary: The nonzero rows of an echelon matrix are linearly independent.

Example:
01232 —4)UW
00125 2| W
00001 -1 us
00000 1| us
000O0GO0 O

Then ug, Uz, us, us are linearly independent because we can not express any vector Uk

(k>2) as a linear combination of the preceding vectors.

V. Bases and dimension

5.1. Definition: A set S = {v1, v2...vn} in a vector space V is called a basis of V if the
following two conditions hold.

(1) S is linearly independent
(2) Sis a spanning set of V.
The following proposition gives a characterization of a basis of a vector space

5.2. Proposition: Let V be a vector space over K, and S = {vi...., va} be a subset of

V. Then, the following assertions are equivalent:

1) S is a basis of V
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i) Yue V, u can be uniquely written as a linear combination of S.

PROOF: (i) = (ii). Since S is a Spanning set of V, we have that YueV, u can be
written as a linear combination of S. The uniqueness of such an expression follows from the

linear independence of S.

(if) = (i): The assertion (ii) implies that span S = V. Let now Ag,...,An €K such that
A1v1 + ...+Anvn = O. Then, since O €V can be uniquely written as a linear combination of S
and O = 0.v1 + ...+ 0.v2 we obtain that A1=A2 = ...=An=0. This yields that S is linearly

independent.
Examples:

1.V =R? S = {(1,0); (0,1)} is a basis of R? because S is linearly independent and
v(x,y) €R?, (x,y) = X(1,0) +y(0,1) € Span S.

2. In the same way as above, we can see that S = {(1, 0,...,0); (0, 1, 0,...,0),...(0, 0,

...,1)} is a basis of R"; and S is called usual basis of R",

3. Pa[x] = {a0 + aix + ...+ anX"|@0...an €R} is the space of polynomials with real

coefficients and degrees < n. Then, S = {1,x,...x"} is a basis of Pn[x].

5.4. Definition: A vector space V is said to be of finite dimension if either V = {O}

(trivial vector space) or V has a basis with n elements for some fixed n>1.

The following lemma and consequence show that if V is of finite dimension, then the

number of vectors in each basis is the same.

5.5. Lemma: Let S = {uy, Uz...ur} and T = {vs, v2,...,vk} be subsets of vector space V
such that T is linearly independent and every vector in T can be written as a linear

combination of S. Then k <r.
PROOF: For the purpose of contradiction letk >r = k >r +1.
Starting from vi we have: vi = Aiui+izuz + ...+ A

Since vi1 #0, it follows that not all A1...,Ar are zero. Without loosing of generality we can

» » o

For v, we have that
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r 1 r . r
N T e T e T S IE R S TH
i=1

Ay i2M i=2
Therefore, v is a linear combination of {v1, uz,...,ur}. By the similar way as above,
we can derive that
vz is a linear combination of {vi, v2, us...ur}, and so on.
Proceeding in this way, we obtain that
Vr+1 IS @ linear combination of {vi, va,...vr}.

Thus, {v1,v2...vr+1} is linearly dependent; and therefore, T is linearly dependent. This is a

contradiction.

5.6. Theorem: Let V be a finite—dimensional vector space; V #{0}. Then every basic

of V has the same number of elements.

PROOF: Let S = {us...,un} and T = {vi...vm} be bases of V. Since T is linearly
independent, and every vector of T is a linear combination of S, we have that m<n.

Interchanging the roll of T to S and vice versa we obtain n <m. Therefore, m =n.
5.7. Definition: Let V be a vector space of finite dimension. Then:
1) if V = {0}, we say that V is of null-dimension and write dimV =0

2) if V = {0} and S = {v1,v2....vn} is a basic of V, we say that V is of n—dimension

and write dimV =n.
Examples: dim(R?) = 2; dim(R") = n; dim(Pa[x]) = n+1.
The following theorem is direct consequence of Lemma 5.5 and Theorem 5.6.

5.8. Theorem: Let V be a vector space of n—dimension then the following assertions
hold:

1. Any subset of V containing n+1 or more vectors is linearly dependent.

2. Any linearly independent set of vectors in V with n elements is basis of V.

3. Any spanning set T = {v1, Vz,..., vn} of V (with n elements) is a basis of V.
Also, we have the following theorem which can be proved by the same method.

5.9. Theorem: Let V be a vector space of n —dimension then, the following assertions
hold.
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(1) If S = {uy, uz,...,ux} be a linearly independent subset of V with k<n then one can

extend S by vectors Uk+,...,un such that {us,uz,...,un} is a basis of V.

(2) If T is a spanning set of V, then the maximum linearly independent subset of T is
a basis of V.

By “maximum linearly independent subset of T” we mean the linearly independent set of
vectors S < T such that if any vector is added to S from T we will obtain a linear dependent

set of vectors.

V1. Rank of matrices

6.1. Definition: The maximum number of linearly independent row vectors of a

matrix A = [ajk] is called the rank of A and is denoted by rank A.

Example:
1 -1 O

A=|1 3 —11|; rank A = 2 because the first two rows are linearly
5 3 -2

independent; and the three rows are linearly dependent.

6.2. Theorem. The rank of a matrix equals the maximum number of linearly

independent column vectors of A. Hence, A and AT has the same rank.

PROOF: Let r be the maximum number of linearly independent row vectors of A;
and let g be the maximum number of linearly independent column vectors of A. We will
prove that g < r. In fact, let vq), ve)...,v¢) be linearly independent; and all the rest row

vectors U, Ue)...ue) of A are linear combinations of v(); v)...,ve),
Ue1) = CuaV(@)tCiaV() + ... tcwrV()
U2) = C21V(1)tC22V(2) + ... T CarV(y)
U(s) = Cs1V(1)FCs2V(2) t ... + CsrV(n).

Writing
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Vi = (V11 Vig - Vln)
V(r) = (Vrl Vi2 o e Vrn)
U :(un Up . uln)
u(s) = (usl Ug .o usn)

we have that
Uik = C11ViktC12Vokt...+C1rVrk

U2k = C21V1ktC22Vakt...+CarVrk

Usk = Cs1Vik + Cs2Vok +... T+ CsrVrk

forallk=1,2,...n.

Therefore,
Uk C11 12 C12
2k =V “21 + Vo 22 Fot Ve “or
Ugk Csi Cs2 Cor

For all k=1, 2...n. This yields that

V = Span {column vectors of A} cSpan <|{0 [;|0 |..[1

CSl CSZ CSI’

Hence,g=dimV <r.

Applying this argument for AT we derive that r < g, there fore, r = .
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6.3. Definition: The span of row vectors of A is called row space of A. The span of
column vectors of A is called column space of A. We denote the row space of A by

rowsp(A) and the column space of A by colsp(A).
From Theorem 6.2 we obtain the following corollary.

6.4. Corollary: The row space and the column space of a matrix A have the same

dimension which is equal to rank A.

6.5. Remark: The elementary row operations do not alter the rank of a matrix.
Indeed, let B be obtained from A after finitely many row operations. Then, each row of B is
a linear combination of rows of A. This yields that rowsp(B) < rowsp(A). Note that each row

operation can be inverted to obtain the original state. Concretely,

+) the inverse of Ri <> Rj is Rj <> R;
+) the inverse of kRi — Ri is %Ri — Ri, where k =0

+) the inverse of kRi + Rj — Rj is Rj — kRj —R;
Therefore, A can be obtained from B after finitely many row operations. Then,
rowsp (A) < rowsp (B). This yields that rowsp (A) = rowsp (B).

The above arguments also show the following theorem.

6.6. Theorem: Row equivalent matrices have the same row spaces and then have the

same rank.

Note that, the rank of a echelon matrix equals the number of its non-zero rows (see
corollary 4.4). Therefore, in practice, to calculate the rank of a matrix, we use the row
operations to deduce it to an echelon form, then count the number of non-zero rows of this
echelon form, this number is the rank of A.

1 2 0 -1\R,-2R,—»R,(1 2 0 -1

Example:A=|2 6 -3 -3|-—————-— -0 2 -3 -1

3 10 -6 -5/R;-3R, >R, (0 4 -6 -2

0 -1
R,-2R, >R
s 2 s -3 —1|=rank(A)=2
——————— —

00 0 O
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From the definition of a rank of a matrix, we immediately have the following

corollary.

6.7. Corollary: Consider the subset S = {vi, v,..., v} < R" the the following

assertions hold.

1. S is linearly independent if and only if the kxn matrix with row vectors v, va,...,

vk has rank k.

2. Dim spanS = rank(A), where A is the kxn matrix whose row vectors are vi, va,...,

Vi, respectively.

6.8. Definition: Let S be a finite subset of vector space V. Then, the number

dim(Span S) is called the rank of S, denoted by ranksS.
Example: Consider
S=4{(1,2,0,-1); (2,6, -3,-3); (3,10, -6, - 5)}. Put

1 2 0 -1 1 2 0 -1 1 2 0 -1
A=|12 6 -3 -3|-»>|0 2 -3 —-1|—>|0 2 -3 -1

3 10 -6 -5 0 4 -6 -2 0O 0 0 O
Then, rank S = dim span S = rank A =2. Also, a basis of span S can be chosen as
{(0,2,-3,-1); (0, 2,-3,- 1)}.

VIl. Fundamental theorem of systems of linear equations

7.1. Theorem: Consider the system of linear equations

AX =B (7.1)
Xl
where A = (ajk) is an mxn coefficient matrix; X = |: | is the column vector of unknowns;
Xn
b,
b, ~ . .
and B = | . . Let A = [A:B] be the augmented matrix of the system (7.1). Then the
bm

system (7.1) has a solution if and only if rank A = rank A. Moreover, if rankA = rank A = n,

the system has a unique solution; and if rank A = rank A <n, the system has infinitely many
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solutions with n — r free variables to which arbitrary values can be assigned. Note that, all the

solutions can be obtained by Gauss eliminations.

PROOF: We prove the first assertion of the theorem. The second assertion follows

straightforwardly.

“=" Denote by C;; C....Cyn the column vectors of A. Since the system (7.1) has a

solution, say X1, X2...xn We obtain that x;C1 + x2C2 + ... + xnCn = B.
Therefore, B ecolsp (A) = colsp (;‘;) c colsp (A). It is obvious that
colsp (A) ccolsp (A). Thus, colsp (K) = colsp(A). Hence, rankA = rank A =dim(colsp(A)).

“<” if rankA = rankg, then colsp(g) = colsp(A). This follows that B ecolspA.
This yields that there exist X1, X2...Xn such that B = x1C1 + x2Cz + ... + XaCh. This means that

system (7.1) has a solution X1, Xa..., Xn.

In the case of homogeneous linear system, we have the following theorem which is a
direct consequence of Theorem 7.1.

7.2. Theorem: (Solutions of homogeneous systems of linear equations)
A homogeneous system of linear equations
AX=0 (7.2)

always has a trivial solution x; = 0; x2 =0..., xn = 0. Nontrivial solutions exist if and only if r
= rankA < n. The solution vectors of (7.2) form a vector space of dimension n —r; it is a

subspace of Mnx1(R).

7.3. Definition: Let A be a real matrix of the size mxn (A € Mmxn(R)). Then, the
vectors space of all solution vectors of the homogeneous system (7.2) is called the null space
of the matrix A, denoted by nullA. That is, nullA = {X e Mnxa(R)|AX = O}, then the

dimension of nullA is called nullity of A.
Note that it is easy to check that nullA is a subspace of Mnx1(R) because,
+) O enullA (since AO =0)

+) VA, u eR and Xy, X2 enull A, we have that A(AX1 + uXz2) = AAX1+pAX2 = A0 +
+u0 = 0. there fore, A X1 + uXz € nullA.

Note also that nullity of A equals n—rank A.
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We now observe that, if X1, X2 are solutions of the nonhomogeneous system AX = B, then
AX1-X2)=AX1—-AX;=B-B=0.

Therefore, X1 — X2 is a solution of the homogeneous system
AX =0.
This observation leads to the following theorem.

7.4. Theorem: Let Xo be a fixed solution of the nonhomogeneous system (7.1). Then,

all the solutions of the nonhomogeneous system (7.1) are of the form
X =Xo+ Xh
where X is a solution of the corresponding homogeneous system (7.2).

VII1. Inverse of a matrix
8.1. Definition: Let A be a n-square matrix. Then, A is said to be invertible (or

nonsingular) if the exists an nxn matrix B such that BA = AB = I, Then, B is called the
inverse of A; denoted by B = A

Remark: If A is invertible, then the inverse of A is unique. Indeed, let B and C be
inverses of A. Then, B=BI=BAC=I1C=C.

8.2. Theorem (Existence of the inverse):

The inverse A of an nxn matrix exists if and only if rankA = n.
Therefore, A is nonsingular < rank A =n.
PROOF: Let A be nonsingular. We consider the system
AX=H (8.1)

It is equivalent to ATAX = AH <IX = AH < X = A'H, therefore, (8.1) has a
unique solution X = A™*H for any HeMnx (R). This yields that Rank A = n.

Conversely, let rankA = n. Then, for any b € Mnxa (R), the system Ax = b always has
a unique solution x; and the Gauss elimination shows that each component x; of x is a linear

combination of those of b. So that we can write x = Bb where B depends only on A. Then,
Ax =ABb =D for any b eMnx: (R).
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0o 1|1 :
Takingnow | . [ |. .. 0 as b, from ABb = b we obtain that AB = 1.
0/ \0

Similarly, x = Bb = BAx for any x € Mnx1(R). This also yield BA = 1. Therefore,
AB = BA = I. This means that A is invertible and A = B.

Remark: Let A, B be n-square matrices. Then, AB = | if and only if BA = 1.
Therefore, we have to check only one of the two equations AB =1 or BA = | to conclude B =
Al also A=B.

PROOF: Let AB = I. Obviously, Null (BTAT) o Null (AT)
Therefore, nullity of BTAT > nullity of AT. Hence,

n—rank (BTA) >n -rank (AT) = rank A =rank AT >rank (BTAT) =rank | =n.
Thus, rank A = n; and A is invertible.
Now, we have that B = IB = A®AB = At = A,

8.3. Determination of the inverse (Gauss — Jordan method):

1) Gauss — Jordan method (a variation of Gauss elimination): Consider an nxn
matrix with rank A = n. Using A we form n systems:

AX) = eqy; AX@ = e@)...AXm) =en) Where e has the j component 1 and other
components 0. Introducing the nxn matrix X = [Xq), Xe),..Xm] and | = [eq), e@)...em] (unit
matrix). We combine the n systems into a single system AX = I, and the n augmented matrix
A =[A'1]. Now, AX= I implies X = Al = A and to solve AX = | for X we can apply the
Gauss elimination to A =[A:1] to get [U:H], where U is upper triangle since Gauss
elimination triangularized systems. The Gauss — Jordan elimination now operates on [U:H],

and, by eliminating the entries in U above the main diagonal, reduces it to [I: K] the
augmented matrix of the system IX = AL, Hence, we must have K = Al and can then read
off Al at the end.

2) The algorithm of Gauss — Jordan method to determine A

Step1: Construct the augmented matrix [A: 1]
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Step2: Using row elementary operations on [A:l] to reduce A to the unit matrix.

Then, the obtained square matrix on the right will be A,
Step3: Read off the inverse A,

Examples:

5 3
1A=

3
: 3.1 1 2 -0
.. 153 : 10 e -
[A:I]:{ . }—>1 5 50—> 51 52
2201 1270 1] o -2 -2 1
5 5
3Ly {10 ~1 3} » {—1 3}
- 5 5 A=
01 : 5 _s| LO1 2 -5 -5
1 0 1 0 1100
2.A=|2 -1 3f[Ad]=l2 -1 3 i 0 1 0O
1 8 1 8 :0 01

R,—-2R, >R,[1 0 2 1 0 0JR,+R, >R,
— > |0 -1 -1 -2 1 0] —>
R,—4R, >R,(0 1 0 -4 0 1

1 0 2 : 1 0 O|-DR,»>R,|1 0 2 1 0 O
o -1 -1:-210, — |01 1:2-10
0 0 -1: -61 1{-DR,>R,|0 0 1 6 -1 -1
R,-R;,—>R,|1 0 O -11 2 02

— 010 -4 0 1
R -2R, > R/|0 0 1 6 -1 -1
8.4. Remarks:
LAY =A,

2. If A, B are nonsingular nxn matrices, then AB is a nonsingular and
(AB)1=B1A",

3. Denote by GL(R") the set of all invertible matrices of the size nxn. Then,
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(GL(R™M), «) is a group. Also, we have the cancellation law: AB = AC; A eGL(R") =B =C.

IX. Determinants

9.1. Definitions: Let A be an nxn square matrix. Then, a determinant of order n is a

a11 a12 a1n
. , o o 3 _ Ay Ay e Ay
number associated with A = [ajk], which is written as D = det A = | : =|A
a, a, .. 4a,

and defined inductively by

forn=1; A=[anu]; D=det A=an

a;; ap a, a;

forn:Z;A:{ };D:detA: = aax — apaz

ay; ap A1 A
forn>2; A =[aj]; D = (-1)*"'a11Mu1+(-1)**2a12M1o+...+(-1)*"a1nMun

where My; 1 <k < n, is a determinant of order n — 1, namely, the determinant of the

submatrix of A, obtained from A by deleting the first row and the k™ column.

1 1 2
1 3 1 3 1 1
Example: |1 1 3[=1 -1 +2 =-1-242=-1
1 2 [0 2 0 1
01 2

To compute the determinant of higher order, we need some more subtle properties of

determinants.

9.2. Properties:

1. If any two rows of a determinant are interchanged, then the value of the

determinant is multiplied by (-1).
2. A determinant having two identical rows is equal to 0.

3. We can compute a determinant by expanding any row, say row j, and the formula

DetA= Y (-1)'"a; M
k=1

where Mjk (a < k < n) is a determinant of order n — 1, namely, the determinant of the

submatrix of A, obtained from A by deleting the j* row and the k™ column.
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1 2
2 1 1 1 1 1 1 2
Example: 3 0 0}=-3 +0 + -0 =-21
5 1 4 1 4 2 4 2 4 2 1

4. If all the entries in a row of a determinant are multiplied by the same factor «, then
the value of the new determinant is o times the value of the given determinant.
510 3 1 2 7

Example: |1 2 21=51 2 1/=5(-6)=-30
1 3 5 1335

5. If corresponding entries in two rows of a determinant are proportional, the value of

determinant is zero.

5 10 35
Example: 2 4  14{=0 sine the first two rows are proportional.
I 3 9

6. If each entry in a row is expressed as a binomial, then the determinant can be

written as the sum of the two corresponding determinants. Concretely,

a;p+ay; apt+ap ...ooa,t+ap, a7 Ay ... Ay a;; ap ... ag,
s ) e Ay |21 822 e fon) A A .. Ay
a, an a, dy1 QApp .. Ay A, A, ... A,

7. The value of a determinant is left unchanged if the entries in a row are altered by

adding them any constant multiple of the corresponding entries in any other row.

8. The value of a determinant is not altered if its rows are written as columns in the

same order. In other words, det A = det AT.

Note: From (8) we have that, the properties (1) — (7) still hold if we replace rows by

columns, respectively.

9. The determinant of a triangular matrix is the multiplication of all entries in the

main diagonal.

10. Det (AB) = det(A).det(B); and thus det(A™) = ﬁ
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Remark: The properties (1); (4); (7) and (9) allow to use the elementary row
operations to deduce the determinant to the triangular form, then multiply the entries on the

main diagonal to obtain the value of the determinant.

Example:
1 2 7/R,-5R, —»>R,J1 2 7 1 2 7
R, +R, > R,
5 11 37 > 0 1 2 01 2|=-16
—
3 5 3/R;-3R,»>R;I0 -1 -1 0 0 -16

X. Determinant and inverse of a matrix, Cramer’s rule

10.1. Definition: Let A = [aj] be an nxn matrix, and let Mjk be a determinant of order
n — 1, obtained from D = det A by deleting the j* row and k™ column of A. Then, Mjx is
called the minor of aj in D. Also, the number Aj=(-1)"** Mk is called the cofactor of ajin D.

Then, the matrix C = [Ajj] is called the cofactor matrix of A.

10.2 Theorem: The inverse matrix of the nonsingular square matrix A = [ax] is

given by
A A Ay
A-l — 1 C [ i ]T _ 1 A12 AZZ A\Z
detA detA det Al : st
A, A, A,

where Ajk occupies the same place as axj (not ajk) does in A.

1
PROOF: Denote by AB = [gi] where B = —— [Aj]".
detA

Then, we have that gu = Zaks

de tA
) n M det A
Clearly, ifk =1, gk = Y (-D)*"*a, — =—"—=
y S ;( )" 3 detA detA
il M detA
Ifkil, K= (_1 l+Sa Is — k
° El ) s detA  detA

where Ay is obtained from A by replacing I row by k™ row. Since Ax has two identical row,

we have that det Ax = 0. Therefore, g = 0 if k #l. Thus, AB = I. Hence, B = A,
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10.3. Definition: Let A be an mxn matrix. We call a submatrix of A a matrix

obtained from A by omitting some rows or some columns or both.

10.4. Theorem: An mxn matrix A = [aj] has rank r > 1 if and only if A has an rxr

submatrix with nonzero determinant, whereas the determinant of every square submatrix of

r + 1 or more rows is zero.

In particular, for an nxn matrix A, we have that rank A = n < det A 20 < 3A(that

mean that A is nonsingular).

10.5. Cramer’s theorem (solution by determinant):

Consider the linear system AX = B where the coefficient matrix A is of the size nxn.

Xl
If D =det A # 0, then the system has precisely one solution X=|: |given by the
Xn
formula X1 = &; X, = & X, = & (Cramer’s rule)
D D D

where D is the determinant obtained from D by replacing in D the k™ column by the column

vector B.

PROOF: Since rank A = rank A = n, we have that the system has a unique solution
(X1,..., Xn). Let Cq, Cy, ... Cn be columns of A, so A = [C1 C»...Cq];
Putting Ak = [ C1...Ck1 B Ck+1 ... Cn] we have that Dx=det Ax
Since (X1,X2,..., Xn) IS the solution of AX = B, we have that
B= > xC, = detA =) x det[C,..C,,C,C,.,]
i=1 i=1

= Xk det A (note that, if i #k, det ([C1...Ck1 Ci Cx+1 ... Cn] = 0)

Therefore, xk = det—Ak = B¢ for all k=1,2,....n.
detA D

Note: Cramer’s rule is not practical in computations but it is of theoretical interest in

differential equations and other theories that have engineering applications.
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XI. Coordinates in vector spaces

11.1. Definition: Let V be an n—dimensional vector space over K, and S = {ey,..., en}
be its basis. Then, as in seen in sections 1V, V, it is known that any vector v eV can be

uniquely expressed as a linear combination of the basis vectors in S, that is to say: there

n
exists a unique (a,az,...an) eK"such thatv= > ae; .
i=1

Then, n scalars ai, a,..., an are called coordinates of v with respect to the basis S.
a

a
Denote by [v]s =] . % | and call it the coordinate vector of v. We also denote by

ap

(v)s=(a1 a2 ... an) and call it the row vector of coordinates of v.

Examples:
1) v =(6,4,3) eR% S ={(1,0,0); (0,1,0); (0,0,1)}- the usual basis of R®. Then,

6
[vls=|4|< v=6(10,0)+4(0,10)+3(0,01)
3

If we take other basis € = {(1,0,0); (1,1,0); (1,1,1)} then

2
[V]le=| 3 | since v=2(1,0,0) + 3(1,1,0) + 1 (1,1,1).
1

2. Let V =Py[t]; S = {1, t-1; (t-1)?} and v = 2t — 5t + 6. To find [v]s we let

(94
[Vls=| B |. Then, v = 2t2-5t+6= o .1+ B(t-1)+ y(t-1) for all t.
/4
3
Therefore, we easily obtain oo = 3; B =- 1; y = 2. This yields [v]s=| — 1
2
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11.2. Change of bases:

Definition: Let V be vector space and U = { ui, Uz..., Un}; and S = {vi,vz,...vs} be
two bases of V. Then, since U is a basis of V, we can express:

V1 = anus + azlz+t...+aniln

V2 = azpU1 + agoUz+...+an2Un

Vnh = ad1nU1 + azgnU2+...+annUn

d;;  dp .. Ay,

Then, the matrix P = | a,, a,,.. a,, | is called the change-of-basis matrix from U

to S.
Example: Consider R® and U = {(1,0,0), (0,1,0);(0,0,1)}- the usual basis;
S ={(1,0,0), (1,1,0);(1,1,1)}- the other basis of R3. Then, we have the expression
(1,0,0) =1 (1,0,0) + 0 (0,1,0) + 0 (0,0,1)
(1,1,0)=1(1,0,0) +1 (0,1,0) + 0 (0,0,1)
(1,1,1) = 1 (1,0,0) + 1 (0,1,0) + 1 (0,0,1)

This mean that the change-of-basis matrix from U to S is

ek

1
1
0

o
I
[ e

Theorem: Let V be an n—dimensional vector space over K; and U, S be bases of V,

and P be the change-of-basis matrix from U to S. then,
[V]lu=PJ[v]s forall v e V.

PROOF. Set U = {uy, Uz,... Un}, S = {Vv1, V2..., Vn}, P = [ai]. By the definition of P, we
obtain that

V= /1iVi = ﬂ’i agu, = ﬂiakiuk =Z[Ziiaki juk

i=1 i=1 k=1 i=1 k=1 k=1 \i=1
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71
7/2 n n
Let[Vlu=|.| Thenv= >y, u, Therefore,yx= > aiA; ¥k=1.2..n
' k=1 i=1
Vn

This yields that [v]u = P[Vv]s.

Remark: Let U, S be bases of vector space V of n—dimension, and P be the change-
of-basis matrix from U to S. Then, since S is linearly independent, it follows that rank P =
rank S = n. Hence, P is nonsingular. It is straightforward to see that P! is the change-of-basis

matrix from S to U.
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Chapter 6: Linear Mappings and Transformations

|. Basic definitions

1.1. Definition: Let V and W be two vector spaces over the same field K (say R or
C). A mapping F: V — W is called a linear mapping (or vector space homomorphism) if it

satisfies the following conditions:
1) Forany u, v €V, F(u+v) = F(u)+ F(v)
2) Forallk e K;and v eV, F (kv) =k F(v)

In other words; F: V — W is linear if it preserves the two basic operations of vector

spaces, that of vector addition and that of scalar multiplication.
Remark: 1) The two conditions (1) and (2) in above definition are equivalent to:
“VApne K VuveV=FQAu+puv)=»rFu) + uF(v)”
2) Taking k = 0 in condition (2) we have that F(Oy) = Oy for a linear mapping
F:V—>W.

1.2. Examples:

1) Given A € Mmxn (R); Then, the mapping
F: Mt (R) > Mmxt (R); F(X) = AX ¥V Xe Mnx1 (R) is a linear mapping because,
a) F(X1 + X2) = A(X1 +X2) = AX1 + AXz
=F (X1) + F(X2) V X1, X2 € Max1 (R)
b) F (AX) = A(X) = AAX V A € R and Xe M (R).
2) The projection F: R® — R3, F(x,y,z) = (x,y,0) is a linear mapping.

3) The translation f: R2 — R?, f(x,y) = (x+1, y +2) is not a linear mapping since f(0,0)
=(1,2) # (0,0) € R

4) The zero mapping F: V ->W, F(v) =Ow V v € V is a linear mapping.
5) The identity mapping F: V — V; F(v)=v V v € V is a linear mapping.

6) The mapping F: R® —» R?; F(x,y,z) = (2x +y +z, X - 4y —2z) is a linear mapping
because F (A(X,y,2)+ u(X1,y1,21) )=F(AX+uxa, Ay + py1, Az + uz1) =
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=(2(AX +pxa)+ry+uyr+iz+pzs, 4(AX+pxi) — 2 (Ay+py1) — (Az + pzi))
= AM2X + Yy + 7, 4X-2y-2) + p(2x1+y1+ 21, 4X1 — 2y1 — 71)
= AF(X,y,2) + uF(X1,y1,21)VA,u €R and (x,y,2) €R3, (X1,y1,21) €R®

The following theorem say that, for finite—dimensional vector spaces, a linear

mapping is completely determined by the images of the elements of a basis.

1.3. Theorem: Let V and W be vector spaces of finite — dimension, let {vi, v2,..., vn }
be a basis of V and let ug,u.,..., u, be any n vectors in W. Then, there exists a unique linear

mapping F: V — W such that F(v1) = u1; F(v2) = ua,..., F(Vn) = Un.
PROOF. We put F: V ->W by

n n
F(v) = zxiui for vzz/iivi e V. Since for each v € V there exists a unique
i=1

i=1

n
(A1,..An) € K"such that v = Zkivi . This follows that F is a mapping satisfying F(v1) = uy;
i=1

F(v2) = uz,..., F(vn) = un. The linearity of F follows easily from the definition. We now prove

the uniqueness. Let G be another linear mapping such that G(vi) = u;i Vi= 1, 2,...,n. Then, for

n
eachv= Y A;v; € V we have that.
i=1

i=1 i=1 i=1 i=1

F(ikivi] =F(v).
i=1

This yields that G = F.

1.4. Definition: Two vector spaces V and W over K are said to be isomorphic if there
exists a bijective linear mapping F: V — W. The mapping F is then called an isomorphism

between V and W; and we denote by V = W.

Example: Let V be a vector space of n—dimension over K, and S be a basis of V.
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Then, the mapping F: V — K"

V > (V1,V2, ....Vn), Where v1,Vo, ....Vy IS coordinators of v with respect

to S, is an isomorphism between V and K". Therefore, V = K"

I1. Kernels and Images

2.1. Definition: Let F: V — W be a linear mapping. The image of F is the set
F(V) = {F (v) v €V }. It can also be expressed as
F(V) = {ueW |3 v e V such that F(v) = u}; and we denote by Im F = F(V).

2.2. Definition: The kernel of a linear mapping F: V — W, written by Ker F, is the

set of all elements of VV which map into Oe W (null vector of W). That is,
Ker F = {veV|F(v) = 0} = F({0})

2.3. Theorem: Let F: V — W be a linear mapping. Then, the image ImF of W is a

subspace of W; and the kernel Ker F of F is a subspace of V.
PROOF: Since F is a linear mapping, we obtain that F(O) = O.

Therefore, O € Im F. Moreover, for A, un € K and u, w elm F we have that there

exist v, v’ €V such that F(v) = u; F(v’) = w. Therefore,

AU+ pw = Af(V) + uF(v') = FQAWV + uv).
This yields that Av + uw € Im F. Hence, ImF is a subspace of W.
Similarly, ker F is a subspace of V.

Example: 1) Consider the projection F: R® — R3 F(x,y,2) = (x,y,0) V (x,y,2) € R®.
Then, Im F = {F(x,y,2)| (x,y,z) € R®} = {(x,y,0)| X,y € R}. This is the plane xOy.

Ker F = {(x,y,2) € R} F(x,y,z) = (0,0,0) € R®} = {(0,0,2)| z € R}. This is the Oz — axis
2) Let A € Mmxn (R), consider F: Mnx1 (R) = Mmx1 (R) defined by
F(X) = AX ¥ X € M (R).

ImF = {AX | X € Mnx1 (R)}. To compute ImF we let Cy, Cy, ... Cn be columns of A,
that is A=[C1C>... Cn]. Then,

IMF={x1C1+x2Co+ ... +Xn Cq| X1 ... Xn € R}

= Span{Cy, C», ... Ch} = Column space of A = Colsp (A)

67



Nguyen Thieu Huy, Lecture on Algebra

Ker F = {X € Mna (R)| AX = 0} = null space of A = Null A,

Note that Null A is the solution space of homogeneous linear system AX =0

2.4. Theorem: Suppose that v1,v2,...Vm Span a vector space V and the mapping
F:V — Wiis linear. Then, F(v1), F(v2), ... F(vm) span Im F.

PROOF. We have that span {vi,... vm} = V. Letnow u € Im F.

Then, 3 v € V such that u = F(v). Since span {vi,...,vm} =V, there exist A1 ... Am

such that v= " A,v, . This yields,

i=1
U=F(v)= F(ikivi )= ikiF(vi).
i=i i=1

Therefore, u € Span {F(v1), F(v2).... F(Vm)}
= Im F < Span {F(v1),.... F(vm)}.
Clearly Span {F(v1), .... F(vm)} < Im F. Hence, Im F = Span {F(v1) .... F(vm)}. ¢.e.d.

2.5. Theorem: Let V be a vector space of finite — dimension, and F: V — W be a

linear mapping. Then,

dimV =dim Ker F + dim Im F. (Dimension Formula)

PROOF. Let {e1, €2 ,..., ex} be a basis of KerF. Extend {es,...,ex} DYy €x+1,...,en SUCh

that {es,....en} is a basis of V. We now prove {F(ex+1)... F(en)} is a basis of Im F. Indeed, by

Theorem 2.4, {F(e1), ..., F(en)} spans Im F but F(e1) = F(e2) = ... = F(ex) = 0, it follows that

{F(ek+1),..., F(en)} spans ImF. We now prove {F(ex+1)... F(en)} is linearly independent. In
fact, if Ak+iF(ex+1) +... + AnF(en) =0 = F (Ak+1€k+1 + ... + An€n) =0

= Ak+1€k+1 t ... + An€n € ker F =span {ey, e, ..., ex}

k n
Therefore, there exist A1, A2, ... Ak such that D" de; = D Aje;

i=1 J=k+1
k n
= D (A)e;+ Y Age; =0,
i=1 J=k+1

Since ey,eo, ..., en are linearly independent, we obtain that
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AM =X =..= Ak = Ak+1 = ... = An = 0. Hence, F (ex+1),..., F(en) are also linearly
independent. Thus, {F(ex+1)... F(en)} is a basis of Im F. Therefore, dim ImF=n-k=n -
dim ker F. This follow that dim ImF + dim Ker F=n=dim V.

2.6. Definition: Let F: V — W be a linear mapping. Then,
1) the rank of F, denoted by rank F, is defined to be the dimension of its image.
2) the nullity of F, denoted by null F, is defined to be the dimension of its kernel.
That is, rank F = dim (ImF), and null F = dim (Ker F).
Example: F: R* 5R3
FXY,st)=(s—y+s+t, Xx+2s—t, x+y + 3s—3t) V (x,y,st) eR*
Let find a basis and the dimension of the image and kernel of F.
Solution:
Im F =span{F(1,0,0,0), F(0,1,0,0), F(0,0,1,0), F(0,0,0,1)}

=span{(1,1,1); (-1,0,1); (1,2,3); (1. -1, -3)}.

Consider
1 1 1 1 1 1
A -b o 012 (by elementary row operations)
= —
1 2 3 0 0O Y y P
1 -1 1 0 0O

Therefore, dim ImF =rank A = 2; and a basis of Im F is
S=1{(1,1,1); (0,1,2)}.
Ker F is the solution space of homogeneous linear system:

X—=y+s+t=0
X+2s—t=0 m
X+y+3s-3t=0

The dimension of ker F is easily found by the dimension formula
dim Ker F=dim (R*) —dimker F=4-2=2

To find a basis of ker F we have to solve the system (1), say, by Gauss elimination.

69



Nguyen Thieu Huy, Lecture on Algebra

I -1 1 1 I -1 1 1 I -1 1 1
1 0 2 -1 o 1 1 -2 o 1 1 =2
- -

1 1 3 -3 0 2 2 -4 0O 0 0 O

—y+s+t=0
Hence, (I)<:>{X Y
y+s—-2t=0

oY = -5 +2t; x = -2s — 3t for arbitrary s and t.
This yields (x,y,s,t) = (-s +2t, -2s — 3t, s,t)
=s(-1,-2, 1, 0)+ t(2,-3,0,1) Vstel

= Ker F = span {(-1,-2, 1, 0), (2,-3,0,1)}. Since this two vectors are linearly
independent, we obtain a basis of KerF as {(-1,-2, 1, 0), (2,-3,0,1)}.

2.7. Applications to systems of linear equations:

Consider the homogeneous linear system AX =0 where A € Mmxn(R) having rank A =r. Let
F: Mnx1 (R) = Mmxa (R) be the linear mapping defined by FX = AX V X € Mnxa (R); and let
N be the solution space of the system AX = 0. Then, we have that N = ker F. Therefore,

dim N = dim KerF = dim(Mnx1(R) — dim ImF = n — dim(colsp (A))
=n-rankA=n-r.

We thus have found again the property that the dimension of solution space of
homogeneous linear system AX = 0 is equal to n — rankA, where n is the number of the

unknownes.

2.8. Theorem: Let F: V — W be a linear mapping. Then the following assertions
hold.

1) Fisin injective if and only if Ker F = {0}

2) In case V and W are of finite — dimension and dim V = dim W, we have that F is

in injective if and only if F is surjective.
PROOQOF:
1) “=" let F be injective. Take any x € Ker F
Then, F(x) = 0 = F(O) = x = O. This yields, Ker F = {O}

“<": Let Ker F = {O}; and X1, X2 € V such that f(x1) = f(x2). Then

70



Nguyen Thieu Huy, Lecture on Algebra

O = F(x1) — F(x2) = F(X1 — X2) = x1— X2 € ker F = {O}.
= X1 — X2 = O = Xg = Xo. This means that F is injective.

2) Let dim V =dim W = n. Using the dimension formula we derive that: F is injective

< KerF={0} < dimKerF=0
< dim Im F =n (since dim Ker F + dim Im F =n)
< Im F =W (since dim W =n) < F is surjective. (g.e.d.)
The following theorem gives a special example of vector space.
2.9. Theorem: Let VV and W be vector spaces over K. Denote by

Hom (VW)= {f: V — W | f is linear}. Define the vector addition and scalar

multiplication as follows:
(F+9)(x) = f(x) + g(x) V f,g € Hom (V,W); Vx eV
(AHX)=Af(X) V A € K; V f e Hom (V,W); VX eV
Then, Hom (V,W) is a vector space over K.
I11. Matrices and linear mappings
3.1. Definition. Let V and W be two vector spaces of finite dimension over K, with

dimV =n; dimW =m. Let S = {v1, Vo, ...vn} and U= {ug, Uz ,..., Um} be bases of V and W,

respectively. Suppose the mapping F: V — W is linear. Then, we can express
F(vi) = a11 Uz +az1 Uz +... + amiUm

F(v2) = a2 Uz +azz Uz +... + @maUm

F(Vn) = ain Uz +azn U2 +... + @mnUm

all a‘12"' aln

Th . . - . . |8y a,.. a,,
e transposition of the above matrix of coefficients, that is the matrix | . 7,

aml am2"'amn

denoted by [F [, is called the matrix representation of F with respect to bases S and U (we

write [F] when the bases are clearly understood)
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Example: Consider the linear mapping F: R® — R?; F(x,y,z) = (2x -4y +5z, x+3y-6z); and

the two usual bases S and U of R® and R?, respectively. Then,
F(1,0,0) = (2,1) = 2(1,0) + 1(0,1)
F(0,1,0) = (-4,3) =-4(1,0) + 3(0,1)
F(0,0,1) = (5,-6) = 5(1,0) + (-6)(0,1)

2 -4 5
Therefore, [F[} =
1 3 -6

3.2. Theorem: Let V and W be two vector spaces of finite dimension, F: V — W be

linear, and S, U be bases of V and W respectively. Then, for any X € V,

[F [XIs = [F(X)]u. (3.1)

PROOF:

n
28X X
k=1

[FI5 [Xs = [a] [X]s =

Zamkxk Xn

k=1

Compute now, F(X) = F (O x;vy) = > x;F(v)) = > x; > agu,
J=1 I=1 =1 k=1

n m
Xjapu, = Z:(Z:aldx])uk .

m n
J=1 k=1 k=1 J=1

For S={vi, V2, ... Vn}; U= {ug, Uz, ... Um}

Therefore [F(X)]u = ;aZJXJ = [F[ [Xs. (g.e.d)

J=1
Example: Return to the above example, F: R® — R?

F(x,y,z) = (2x-4y+5z, x+3y-62). Then,
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_(2x-4y+5z) |2 -4 5 X) et
[F(x,y,z)]u—(Hsy_&j—{1 , _J@—[FL [Ouy)]s

3.3. Corollary: If A is a matrix such that A [X]s = [F(X)]u for all X € V, then

Note: For a linear mapping F: V — W with finite—dimensional spaces V and W. If

we fix two bases S and U of V and W, respectively, we can replace the action of F by the

multiplication of its matrix representation [F] through equality (3.1). Moreover, the
mapping
3: Hom (V,W) — Mmxn (R)
Fis[Ff
is an isomorphism. In other words, Hom(V,W) = Mmxn (K). The following theorem gives the
relation between the matrices and the composition of mappings.

3.4. Theorem. Let V, E, W be vector spaces of finite dimension, and R, S, U be

bases of V, E, W, respectively. Suppose that f: V —E and g: E —»W are linear mappings then
[oof [ =[aL [f ]S

3.5. Change of bases: Let V, W be vector spaces of finite—dimension, F: V — W be
a linear mapping; S and U be bases of V and W; S’, U’ be other bases of V and W,

respectively. We want to find the relation bet ween [F]; and [F]).. To do that, let P be the

change—of-basis matrix from S to S’, and Q be change—of-basis matrix from U to U’,

respectively.

By Theorem 3.2 and Corollary 3.3, we have that.

[FI) [XIs= [FOLu

[X]s = P[X]s> and [F(X)]u = Q[F(X)]u
Therefore, [F[5 [X]s= [F[ P[X]s = [F(X)]u= Q[F(X)]u:
Hence, Q! [F’ P[X]s' = [F(X)]u for all X e V
Therefore, by Corollary 3.3,

[FI. =Q*[F]5 P. (3.2)
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Example: Consider F: R® —» R?
F(x,y,z) = (2x-4y+z, X + 4y -52).

Let S, U be usual bases of R® and R?, respectively. Then

FL = E . 1_5}

Now, consider the basis S* = {(1,1,0); (1,-1,1); (0,1,1)} of R® and the basis U’ =

1 1 0

1), (-1, 0 . en, the change — of — basis matrix from S to 1sP= —
{(1,1); (-1,1)} of R2. Then, the ch f — basi ix fromStoS isP=|1 -1 1
0 1 1

I -1
and the change — of — basis matrix from Uto U’ is Q = (1 | j

1 1 0
. 1 -N\'T2 -4 1 1 0 -5/2

Therefore, [FI. = QL [F] P= 1 -1 1|=
Fl-=Q*[Fk (1 1}{13 —5}0 L1 {3 -7 1/2}

IV. Eigenvalues and Eigenvectors

Consider a field K; (K = R or C). Recall that Mn(K) is the set of all n-square matrices

with entries belonging to K.

4.1. Definition: Let A be an n-square matrix, A € Ma(K). A number A € K is called
an eigenvalue of A if there exists a non-zero column vector X eMnx (K) for which AX =
AX; and every vector satisfying this relation is then called an eigenvector of A corresponding
to the eigenvalue A. The set of all eigenvalues of A, which belong to K, is called the

spectrum on K of A, denoted by SpkA. That is to say,

SpkA = { LeK |3 X € Mua(K), X # 0 such that AX = AX}.

-5 2
Example: A = ( 5 2] e M2(R). We find the spectrum of A on R, that is Spr A.

By definition we have that

0
A € SprA < IX = (’“J * (0] such that AX = AX

X)

< The system (A - A1)X = 0 has nontrivial solution X =0
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< det (A-Al) =0

50 2 )
& =0 A +7A+6=0
22—

A
S - , therefore, SprA = {-1, -6}

To find eigenvectors of A, we have to solve the systems
(A-xDX =0 for A € SprA. 4.2)

For A =X1=-1: we have that
-5+1 2 X 0 —4x, +2x, =0 X 1
(4.1) Y=l e T Tel Tt =X
2 -2+1| X, 0 2%, —X, =0 X, 2
1
Therefore, the eigenvectors corresponding to A1 = -1 are of the form k[2) for all k #0

X, +2X, =0 X -2
For A = A2 = -6: (4.1)<:>{ 172X <:>(1j=x2( J

2%, +4x, =0 X, 1

-2
Therefore, the eigenvectors corresponding to A = -6 are of the form k[ 1 J for all k #0.

4.2. Theorem: Let A eMn(K). Then, the following assertion are equivalent.
(i) The scalar A eK is an eigenvalue of A
(if) A eK satisfies det (A-Al) =0
PROOQOF:
(i) & X eSpk(A) <(3 X £0, X eMnx1(K) such that AX = AX)
< The system (A - Al)X =0 has a nontrivial solution
< det (A-Al) =0 (ii)
4.3. Definition. Let A € Mn(K). Then, the polynomial } (1) = det (A - Al) is called

the characteristic polynomial of A and the equation ¥ (A) = 0 is called characteristic
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equation of A. Then, the set Ex = {X € Mnx1(K) | AX = AX} is called the eigenspace of A

corresponding to A.

Remark: If X is an eigenvector of A corresponding to an eigenvalue A € K, so is kX
for all k = 0. Indeed, since AX = A X we have that A(kX) = kAX = k(AX) = A(kX). Therefore,

kX is also an eigenvector of A for all k = 0.
It is easy to see that, for A € Spk(A), Ex.is a subspace of Mnx1 (K).

Note: For A € Spk(A); the eigenspace Ex coincides with Null(A - Al); and therefore
dim Ex=n-rank (A-Al)>0.

-2 2 -3
Examples: For A=| 2 1 -6 | we have that
-1 -2 0

|A-A|=0< -A3- 22 +21A +45=0
< M1 =5; A2 = A3 = -3. Therefore, Spk(A) = {5; -3}

1
For A1 =5, consider (A-5NX=0<X=x1| 2 | VX1
-1

1
Therefore, Es = Span<| 2
-1
-2 3
For A2 = A3 =-3, solve (A+31)X=0 < X=x2 | 1 [+x3|0|VXz, Xa.
0 1
-21 1|3
Therefore, E3=Span{| 1 |,{0|}
0|1

4.5. An application: Stretching of an elastic membrane

An elastic membrane in the xix2 plane with boundary x; +x3 =1 is stretched so that

a point P(x1,Xx2) goes over into the point Q(y1,y2) given by
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=i 3]

Find the “principal directions”, that is, directions of the position vector X =0 of P for
which the direction of the position vector Y of Q is the same or exactly opposite (or, in other
words, X and Y are linearly dependent). What shape does the boundary circle take under this

deformation?
Solution: We are looking for X such that Y = AX; X#0
< AX = AX. This means that we have to find eigenvalues and eigenvectors of A.

3

5-A
Solvedet (A-Al)=0<
3 5-A

1
For A1 = 8. Es = Span {(J}
1
For A>=2.E> = Span {( 1]}

1 1
We choose u; = (J; Uz = ( J. Then, uz, U2 give the principal directions. The

‘:0<:>7u:8,7u2=2

eigenvalues show that in the principal directions the membrane is stretched by factors 8 and

2, respectively.
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Accordingly, if we choose the principal directions as directions of a new Cartesian

V1,V2 — coordinate system, say,

oo e )

1 1
Y2 X3 Zy - \)
2 2
1 8., 8,
:zl:\/g\/gSSXl:\/El\/EZ
Z2 __1 i 3 5 X2 __ZX 2 X
V2 W2 2 2
Z2 Z2 2 2 Z2 Z2 . .
L4 22 =2(x] +x5)=2< =L+ -2 =1 and we obtain a new shape as an ellipse.
32 2 64 4

V. Diagonalizations

5.1. Similarities: An nxn matrix B is called similar to an nxn matrix A if there is an

nxn — nonsingular matrix T such that.
B=T!AT (5.1)

5.2. Theorem: If B is similar to A, then B and A have the same characteristic

polynomial, therefore have the same set of eigenvalues.
PROOF:
B=T!AT=|B-Al|=|TAT - TAIT|
= TYA-ADT[=| T [A-AL] | T|=|A-Al|

5.3. Lemma: Let A1; A2 ... Ak be distinct eigenvalues of an nxn matrix A. Then, the

corresponding eigenvectors X1, Xz, ... Xk form a linearly independent set.

PROOF: Suppose that the conclusion is false. Let r be the largest integer such that
{X1; X2;...Xr} 1s linearly independent. Then, r < k and the set {Xu,..,Xr+1} is linearly dependent.

This means that, there are scalars C1, C»,... Cr+1 not all zero, such that.

Cixy +Cox2 + .. 4Cr+1X+1 = 0 (3.3)
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r+1 r+1
=Y Cix; = 0and A(D> Cx;) =0

i=1 i=1

r+1

Zkrﬂcixi =0 r
Then < i=! =Y (A —2)Cix; =0

r+1

> ACix;=0 i
i=1

Since X1, X2, ...Xr are linearly independent, we have that (Ar+1 - Ai)Ci=0Vi=12..rit
follows that Ci=0 Vi=1,2,...r. By (3.3), Cr+1Xr+1 =0

Therefore Cr+1 = 0 because xr+1= 0. This contradicts with the fact that not all Cy,...

Cr+1 are zero.

5.4. Theorem: If an nxn matrix A has n distinct eigenvalues, then it has n linearly
independent vectors.

Note: There are nxn matrices which do not have n distinct eigenvalues but they still

have n linearly independent eigenvectors, e.g.,

0 1 1
A=-1
A=|1 0 1 ;|A-k||:(k+1)2(k-2):0<:>Lh_z,
110 -
1 1 1
and A has 3 linearly independent vectors us=| 1 |;u2=| —1 |:Uz=| 0
1 1 -1

5.5. Definition: A square nxn matrix A is said to be diagonalizable if there is a
nonsingular nxn matrix T so that T-2AT is diagonal, that is, A is similar to a diagonal matrix.

5.6. Theorem: Let A be an nxn matrix. Then A is diagonalizable if and only if A has

n linearly independent eigenvectors.

A 0 - 0
- . 1 0 4, - 0 _
PROOF: If A is diagonalizable, then 3T, T"AT = . ° . . |- a diagonal
0 O A

matrix.

Let Cy, Ca,... Cn be columns of T, that is, T = [C1Coa... Cq].
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A 0 0 AC, = A,C,

0 4, - 0| AC,=4C,
ThenAT=T| . ° . . |=.

0 0 - A AC, =41.C,

= A has n eigenvectors Ci, Ca,...,Cn. Obviously, Cy, C»,... C are linearly independent
since T is nonsingular.

Conversely, A has n linearly independent eigenvectors C1, Ca,... Cn corresponding to

eigenvalues A1, A2,...An, respectively.

A 0 0

0 4, - 0

SetT=[C1C>...Cq]. Clearly, AT=T S i

0 0 Ay
A 0 - 0

L 0 4, i . .

Therefore T-AT= ) is a diagonal matrix. (g.e.d)

0O 0 - A

n

5.7. Definition: Let A be a diagonalizable matrix. Then, the process of finding of T
such that T*AT is a diagonal matrix, is called the diagonalization of A.

We have the following algorithm of diagonalization of nxn matrix A.
Step 1: Solve the characteristic equation to find all eigenvalues A1, A2,...An

Step 2: For each Ai solve (A - Ail)X = 0 to find all the linearly independent
eigenvectors of A. If A has less than n linearly independent eigenvectors, then conclude that
A can not be diagonalized. If A has n linearly independent eigenvectors, then come to next

step.

Step 3: Let ug, uz,...,un be n linearly independent eigenvectors of A found in Step 2.
Then, set T = [u1 U2...Un] (that is columns of T are ug,us,...,Un, respectively). By theorem 5.6

A 0 - 0
0 A 0

we have that T2AT = : :2 . where ui is the eigenvectors corresponding to the
0 0o .-- A

n

eigenvalue A, i = 1,2,... n, respectively.
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0 1
Example: A=|1 0
1 1

O =

A=k, =-1

3=

Characteristic equation: | A - Al | = (A+1)’(A-2) = 0 & {

X

For A1=A2=-1: Solve (A+1)X =0 for X = | x, | we have X1+X2+x3 =0;

X3
1 1
There are two linearly independent eigenvectors u1 = | —1{; and u2 = | 0 | corresponding to
0 -1
the eigenvector -1.
Xy
For Az = 2, solve (A-21)X =0 for X = | x, | we obtain that
X3
—2X,+X, +x3=0 X, 1
X; —2X, +X3 =0 < | x, |=x,|1]|. There is one linearly independent eigenvector
X +X, —2%x;=0 X5 1
1
usz = | 1| corresponding to the eigenvector A3 = 2. Therefore, A has 3 linearly independent
1
1 1 1
eigenvectors ug, Uz, us. Settingnow T=| -1 0 1| we obtain that
0 -1 1
-1 0 O
TIAT=| 0 -1 0] finishing the diagonalization of A.
0O 0 2

V1. Linear operators (transformations)

6.1. Definition: A linear mapping F: V— V(from V to itself) is called a linear

operator (or transformation).
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6.2. Definition: A linear operator F: V —V is called nonsingular if Ker F = {0}.
By Theorem 2.8 we obtain the following results on linear operators.

6.3. Theorem: Let V be a vector space of finite dimension and

F: V —>V be a linear operator. Then, the following assertions are equivalent.
1) F is nonsingular.
i) F is injective.
1ii) F is surjective.
iv) F is bijective.
6.4. Linear operators and matrices: Let V a vector space of finite dimension, and

F: V -V be a linear operator. Let S be a basis of V. Then, by definition 3.1, we can

construct the matrix [F]; . This matrix is called the matrix representation of F corresponding
to S, denoted by [Fls =[F];.
By Theorem 3.2. and Corollary 3.3 we have that [F]s [X]s = [FX]s V x € V.

Conversely, if A is an nxn square matrix satisfying A[x]s = [Fx]s for all x € V, then
A = [F]s.

Example: Let F: R® > R®; F(x,y,z) = (2x — 3y+z,X +5y -3z, 2x -y — 52). Let S be the

2 -3 1
usual basis in R%, S = {(1,0,0); (0,1,0); (0,0,1)}. Then,[F]s=|1 5 -3
2 -1 -5

6.5. Change of bases: Let F: V —V be an operator where V is of n—dimension, and
let S and U be two different bases of V. Putting A = [F]s; B = [F]u and supposing that P is
the change—of-basis matrix from S to U, we have that

B =PIAP

(this follows from the formula (3.2) in Section 3.4). Therefore, we obtain that two matrices A

and B represent the same linear operator F if and only if they are similar.

6.6. Eigenvectors and eigenvalues of operators

Similarly to square matrices, we have the following definition of eigenvectors and

eigenvalues of an operator T: V —V where V is a vector space over K.
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Definition: A Scalar A € K is called an eigenvalue of T if there exists a nonzero

vector v eV for which T(v) = Av. Then, every vector satisfying this relation is called an

eigenvector of T corresponding to A.

on K.

The set of all eigenvalues of T in K is denoted by SpkT and is called spectral set of T

Example: Let f: R?2 — R f(x,y) = (2x+y,3y)
A € Spkf < 3(x,y) # (0,0) such that f(x,y) =A(X,y)

2-Mx+y=0

< 3 (xy) # (0,0) such that { G-y =0

2-A =0
< the system ( Xty has a nontrivial solution (x,y) #(0,0)
B-My=0
2-A 1
< =0 < (2-0)(3-1)=0
‘ . H‘ (2-1)(3-1)

rA=2
& {k _; < A € Spr[f]s where [f]s { 3_1

} is the matrix representation of

f with respect to the usual basis S of R?.

Since f(v) = Ave [f(V)]u=A[V]u <[flu[V]u=A[v]u for any basis U of R?, we can easily

obtain that 2 is an eigenvalue of f if and only if 2. is an eigenvalue of [f]u for any basis U of R?.

Moreover, by the same arguments we can deduce the following theorem.

6.7. Theorem. Let V be a vector space of finite dimension and F: V —V be a linear

operator. Then, the following assertions are equivalent.

i) L e Kis an eigenvalue of F

i) (F -Al) is a singular operator, that is, Ker (F - A1) #{0}

iii) A is an eigenvalue of the matrix [F]s for any basis S of V.
Example: Let F: R® -R? be defined by

F(X,y,z) = (y+z,x+z,x+y); and S be the usual basis of R>.

01 1
Then[Fls=|1 0 1 |and SprF = Spr[F]s = {-1,2}
110
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Remark: Let T: V— V be an operator on finite dimensional space V and S be a basis
of V. Then,

ve Vs an eigenvector of T < [Vv]s is an eigenvector of [T]s
This equivalence follows from the fact that [T]s[v]s = [TV]s.

Therefore, we can deduce the finding of eigenvectors and eigenvalues of an operator

T to that of its matrix representation [T]s for any basis S of V.

6.8. Diagonalization of a linear operator:

Definition: The operator T: V— V (where V is a finite-dimensional vector space) is
said to be diagonalizable if there is a basis S of V such that [T]s is a diagonal matrix. The
process of finding S is called the diagonalization of T. Since, in finite-dimensional spaces,
we can replace the action of an operator T by that of its matrix representation, we thus have

the following theorem whose proof is left as an excercise.

Theorem: let V be a vector space of finite dimension with dim V =n, and T: V> V

be linear operator. Then, the following assertions are equivalent.
1) T is diagonalizable.
ii) T has n linearly independent eigenvectors.
iii) There is a basis of V, which are consisted of n eigenvectors of T.
Example: Let consider above example T: R® -R3 defined by
T(x,y,2) = (y+z,x+z,x+y)

To diagonalize T we choose any basis of R?, say, the usual basis S. Then, we write

[Tls=

—_— = O

1 1
0 1
1 0

The eigenvalues of T coincide with the eigenvalues of [T]s; and they are easily

computed by solving the characteristic equation

-2 1 1
Det([Tls-AD)=|1 -A 1|=0& (A+1)*(A-2)=0
11 -x
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Next, using the fact that v € V is a eigenvector of T if and only if [v]s is an
eigenvector of [T]s, we have that for A = -1, we solve ([T]s-A) X =0< ([T]s+ DX =0
X;+X,+Xx3=0 X,

< 94X, +X, +x53 =0 (for x = | x, | corresponding to v = (X1, X2, X3))

X;+X,+Xx3=0 X3

Therefore, there are two linearly independent eigenvectors corresponding to A = -1;
these are v1 = (1,-1,0) and v2 = (1,0,-1).
Xy
For A =2, we solve ([T]s -21)X = 0 (for x = | x, | corresponding to v = (X1,X2,X3)).
X3
We then have
—2X,+X,+x3=0
<9 X, —2%,+X3; =0 < (X,X2,X3) = x1(1,1,1) V X1

X, +X, —2%x3=0

Thus, there is one linearly independent eigenvector corresponding to A = 2, that may

be chosen as vz = (1,1,1).

Clearly, v1, vz, vaare linearly independent and the set U = {vi1,v2,vs} is a basis of R®

for which the matrix representation [T]u is diagonal.
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Chapter 7: Euclidean Spaces

I. Inner product spaces

1.1. Definition: let V be a vector space over R. Suppose to each pair of vectors u, v €

V there is assigned a real number, denoted by <u,v>. Then, we obtain a function:
VXV ->R
(uv) — <u,v>
This function is called a real inner product on V if it satisfies the following axioms:
(lh):<au+bwyv>=a<uv>+b<wyv>VvuvweVandab eR (Linearity)
(I2): <uyv>=<v,u>VvuyVv eV (Symmetry)
(I3): <u,u>>0 Vu e V,;and<u,u>=0ifand only if u = O-the null vector of V
(Positive definite).

The vector space V with a inner product is called a (real) Inner Product Space (we write IPS
to stand for the phrase: “Inner Product Space”).

Note:
a) The axiom (l1) is equivalentto | 1) <ug +uz,v> = <up,v> + <u2,v>V Uy, Uz, V €V.
2) <ku,v>=k<u,v>V u,v eV
b) Using (11) and (I2) we obtain that
< U, avit+Bve> = <avi + Bz, U> = a <Vi,u> +B<va,u>
= o <u,vi>+ B<u,v>> V o, € Rand u,vi,v2 eV

Examples: Take V= R"; let an inner product be defined by

n
< (U Uz...Un), (V1,V2,..V0)> = D> wyv;

i=1
Then, we can check
(11): For u = (ug,uz...un);w = (W1,W2,...wn) and v= (v1,v2,...vn), and a,b € R, we

have

u u u
<au +bw,v>= D" (au; +bw,)v; =D auv; +b> w,v, = a<u,v> + b<w,v>
i=1 i=1 i=1
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u u
i=1 i=1

u u
l3): <uu>=>'uf >0 and<uu>=0< > uf =0
i=1

i=1 i=
SUu=U=---=ur=0<u=(0,0,...,0)-null vector of R".

Therefore, we obtain that < -, - > is an inner product making R" the IPS. This inner
product is called usual scalar product (or dot product) on R?, and is sometimes denoted by

u-v=<uv>

2) Let C[a,b] = {f: [a,p] »R | f is continuous} be the vector space of all real,

continuous function defined on [a,b] = R. Then, one can show that the following assignment
<f.g>= [f(x).g00dx ¥ f, g eClab]

is an inner product on C[a,b] making C[a,b] an IPS.

3) Consider Mmxn (R) — the vector space of all real matrices of the size mxn. Then,

the following assignment

<A,B> = Tr (A"B), where Tr ([Cij]) = D_C; for an n-square matrix [Cj], is an inner

i=1

product on Mmxn (R). It is called the unual inner product on Mmxn(R).

Specially, when n= 1 we have that the (Mmx1(R), <.,.>) is an IPS with

N X Y1
<XY>=XTY= Y xy forX=| i |; Y=

i=1
Xn Yn
1.2. Remark: 1) <O,u> =0 because <O,u>=<0.0,u>=0<0,u>=0.
2) If u = O then <u,u> > 0.

1.3. Definition: An Inner Product Space of finite dimension is called an Euclidean

space.
Example of Euclidean spaces:
1) (R",<-,->),where<-,-> isusual scalar product .

2) (Mmxn(R), <-,->), where <., -> isusual inner product .
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I1. Length (or Norm) of vectors

2.1. Definition: Let (V, <-, - >) be an IPS. For each u eV we define |u = y<u,u >
and call it the length (or norm) of u.
We now justify this definition by proving the following properties of the length of a vector.

2.2. Proposition. The length of vectors in V has the following properties.

1) [u| >0vueVand |u| =0<u=0.

2) [uf =14 Ju] v & eR;ueV.

3) lutvi[ < lull+MI v u, v e V.

PROOF. The proofs of (1) and (2) are straightforward. We prove (3). Indeed,

3) & Ju+v]® < Jul* + M+ 2Ju] ¥

& <UHY, UHV> < <UU> +<V,v> + 2. /< uu >< v, v >

By the linearity of the inner product the above inequality is equivalent to

<u,u> + 2<u,v> + <v,v> < <U,u> + 2<v,v> + 2\/< uu><v,v>

< <u,v> < \/< uLu><v,v>

This last inequality is a consequence of the following Cauchy — Schwarz inequality
<u,v>2 < <u,u> <v,v>. (C-S)

We now prove (C-S). In fact, forallt € R we have that <tu +v, tu+v>>0

S t2<uu>+2<uv>t +<vv>>0VteR

If u =0, the inequality (C-S) is obvious.

If u= 0, then we have that A’ < 0 < <u,v>? < <u,u> <v,v> (g.e.d)

2.3. Remarks:

1) If |ul| = 1, then u is called a unit vector.

2) The non-negative real number d(u,v) = |u—v] is called the distance between u and
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3) For nonzero vectors u, v € V, the angle between u and v is defined to be the angle

<u,v>

0,0< 0<m,suchthat cosO = ———
Jull V]

4) In the space R" with usual scalar product <.,.> we have that the Cauchy —Schwarz

inequality (C — S) becomes
(Xay1 + XaY2 + ot XnYn)2 < (X2 4+ X2+ + XD (Y + Y5+ YD)

for x = (X1, X2,...Xn) @and y = (Y1, y2,... Yn) €R", which is known as Bunyakovskii inequality.
I11. Orthogonality
Throughout this section, (V, <-, - >)isan IPS.

3.1. Definition: the vectors u,v €V are said to be orthogonal if <u,v> = 0, denoted by

u L v (we also say that u is orthogonal to v).

Note: 1) If u is orthogonal to every v eV, then <u,u>=0=u=0.

2) Foru,v #0; ifu L v, the angle between u and v is g

Example: let V = R", and < -, - >- the usual scalar product.
(1,1,1) L (1,-1,0) because <(1,1,-1), (1,-1,0)>=1.1-1.1+0.0 =0
3.2. Definition: Let S be a subset of V. The orthogonal complement of S, denoted by

1
S (read S “perp”) consists of those vectors in V which are orthogonal to every vectors of S,

that is to say,
St ={veV|<v,u>=0Vu e S}

In particular, for agivenu € V; u* = {u}" = {veV|v L u}.
The following properties of St are easy to prove.

3.3. Proposition: Let V be an ISP. For S c V, St is a subspace of V and
St N S < {0}. Moreover, if S is a subspace of V then St n S ={0}.

Examples:

1) Consider R®with usual scalar product. Then, we can compute

(1,3, - ALt ={(x,y,2) € R®| x+ 3y -4z = 0}
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= Span {(3,-1,0); (0,4,3)} c R®

2) similarly {(1,-2,1): (-21,1)} = {(X, y2) <R { X-2y+2=0 }

—-2X+y+2=0
=Span{(1,1,1)}.

3.4. Definition: The set S — V is called orthogonal if each pair of vectors in S are
orthogonal; and S is called orthonormal if S is orthogonal and each vector in S has unit
length.

To be more concretely, let S = {ug,uz,...,ux}. Then,

+) Sis orthogonal <<uj,ui>=0V i#; where1<i<k;1<j<k

. 0 ifi#] . .
+) S is orthonormal <<uij,u;> = Lifici where 1< i <k; 1<j<k.
if i=]
The concept of orthogonality leads to the following definition of orthogonal and

orthonormal bases.

3.5. Definition: A basis S of V is called an orthogonal (orthonormal) basis if S is an
orthogonal (orthonormal, respectively) set of vectors. We write ON-basis to stand for

“orthonormal basis”.

3.6. Theorem: Suppose that S is an orthogonal set of nonzero vectors in V. Then S is
linealy independent.

PROOF: Let S = { ug, Uz,..., U} with ui= 0 V iand <uj, > =0 V i #j
k
Then, suppose A1, Az.... Ak € R such that: ) Au; =0.
i=1
It follows that
k k Kk
0= <Zﬂiui,uj>=z</’tiui,uj> = > A u;,uy ) =4, {uy,uy) for fixed j e{1,2,..k}.
i=1 i=1

i= i=1
Since <uj,u> # 0 we must have that A; = 0; and this is true for any j € {1,2,....k}. That
means, A1 = A2 = ... = Ak = 0 yielding that S is linearly independent.

Corollary: Let S be an orthogonal set of n nonzero vectors in a euclidean space V

with dim V =n. Then, S in an orthogonal basis of V.
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Remark: Let S = { e, €2, ...en} be an ON — basis of V and u,v €V. Then, the

coordinate representation of the inner product in V can be written as

i=1 J=1

0 ifi#j

since <gj,e;>= o
( o {1 ifi=j

3.7. Pithagorean theorem: Let u Lv. Then, we have that |ju|? + ||v|? = [Ju + v|2

PROOF: ||u+ v|? = <u +v,u+v> = <u,u> + <v,v> +2<u,v> = [u|? + |v|?

Example: Let V = C[-r, «], and <f,g> = f f(t)g(t)dt forallf,g e V

Consider S = {1, cost, con2t,..., cosnt, sint, ... sinnt,...}. Due to the fact that
J'”cosnt.cosmt dt=0vm=nand [ sinnt sinmtdt=0V m = n, and J'”cosntsin mt dt=0
- —T -

Vv m,n, we obtain that S is an orthogonal set.

3.8. Theorem: Suppose S = {us, Uz,...Un} be an orthogonal basis of V and v €V. Then

<v,u; >
V= Z—'.ui
i <U;,u; >

In orther word, the coordinate of v with respect to S is

VU > <VU, > <VU, >
<ULl > <UyU, > <u U >

PROOF. Let V = AUk . We now determine AxY k = 1,..n. Taking the inner

n
k=1
product <v , u;>, we have that
n n
<V,U> = <Z/1kuk,uj> =D A <Uy,u; > =2 <ujup> for fixed j € {1,2,...,n},
k=1 k=1

because, <uk,u;>=0 if k #]j.

AT _
Therefore Aj= ——— forall j € {1,2,....,n}. (g.e.d)
<uj,Uu; >

Example: V = R® with usual scalar product < .,. >
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S={(1,2,1); (2,1,-4); (3,-2,1)} is an orthogonal basis of R®. Letv = (3, 5, -4). Then
to compute the coordinate of v with respect to S we just have to compute
_ <@,2D),35-4)>_9 3
|1.2,-1)

_ < 2,1,-4),(3,5,-4) > _ 2_7 _ 2
|(1’2’_4)”2 21 7

_ <(3,-2,1),(3,5,-4) > _ —_5
|32 14

2 6 2

Therefore: (v)s = 3,2,_—5
27 14

Note: If S = {ug,uz,...un} is an ON — basis of V; then for ve V we have that
V=) <V, > U
i=1

In other words, (V)s=(<V, Ur>; <v,u2>,..., <V,Un>).
3.9. Gram-Schmidt orthonormalization process:
As shown a bove, the ON — Basis has many important properties. Therefore, it is natural to

pose the question: For any Euclidean space, does an ON-Basis exist? Precisely, we have the

following problem.

Problem: Let {vi, v2,...va} be a basis of Euclidean space V. Find an ON — basis
{e1,e2,...en} of V such that

Span {e1,e2,...,ex} = Span {vi,v2,...,.vk}V k=1,2,...,n. *)
Solution: Firstly, we find an orthogonal basis {uz,uz,...un} of V satisfying:
Span {uy,uz,...,un} = Span {vi,v2,...,.vk} V k= 1,2..n.
To do that, let us start by putting:
U1 = vy, then,
U2 = V2 + a21U1. Let find the real number o21 such that <uz, ug> = 0.

<V,,U, > <V,,U, >

,and hence up = vy, - —=—=—us.
<u;,u; > <u;,u; >

This is equivalent to a1 = -
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It is straightforward to see that
span {uy,uz2} = span {vi,v2}.

Proceeding in this way, we find uk in the form

_ o <Yy > <Y lUy > o <y >
k=0, — U — Uy — ... Uy
< up,up > < Uy, Uy > < Uy, Uy >

for all k = 2,..., n, yielding the set of vectors {uz,uo,...,un} satisfying that <uj, u>> =0 Vi #]

and

Span {ug,uz,...,ux} = Span {vi,v2,..vi} forall k=1.2..,n.

Secondly, putting: e1 = 2. ; Bn = we obtain an ON — basis of V

||u1|| ol ||u ||

satisfying that Span {e,ez,...ex} = span {vi,v2,...,.vi}V k=1,....n
The above process is called the Gram — Schmidt orthonormalization process.
Example: Let V = R® with usual scalar product < .,. >, and
S={v1=(1111); v2=(0,1,1); v3 = (0,0,1)} be a basis of V.

We implement the Gram — Schmidt orthonormalization process as follow:

Us = V1= (1,1,1)

_ <V,,Up > 21 1)
Up=Vve- —2 17 4, =(0,1,1 1,11 =, ==
2=Ves g s 04D ( )[333

211 11
us=vs- —(LLD—=(-=,=,2) =(0,——,—

3= V3 ( )= ( 33 3) ( 5 2)

u, 1

nge= Mo L L L) (2 1 1
NOW, puting: 1= 11 (@’ﬁ’@)’e u,] (f ffj

Us _

es = m— (O—%%j

Span {e1} = span {v1}; Span {e1,e-} = Span{v1,v2} and span {e1,e2,es} = Span {vi,v2,v3} =
R?

we obtain an ON — basis {e1,e2,e3} satisfying that

3.10. Corollary: 1) Every Euclidean space has at least one orthonormal basis.
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2) Let S = {ug,u,...ux} be an orthonormal subset of vectors is an Euclidean space V
with dim V = n > k. Then, we can extend S to an ON — basis U = {uy,uz, ... ,Uk,Uk+1,..., Un} OF
V.

IV. Projection and least square approximations

4.1. Theorem: Let V be an Euclidean space, W be a subspace of V with W = {0}.

Then for each v e V, there exists a unique couple of vectors wi € W and w2 € W+ such that

V = Wi +Wo.

PROOF. By Gram — Schmidt ON process, W has an ON-basis, say S = {uz,ua,...,Ux}.
Then, we extend S to an ON — basis {uz,uo, ... ,Uk, Uk+1,..., Un} Of V. Now, for v e V we have

the expression

k n
Putting w1 = Y (v,u;)u, ;w2 = > (v,u;)u, we have that wi eW because {us,..., u}isa
J=1 I=k+1

basis of W. We now prove that w, e W-. Indeed, taking any u € W, we have that

u= iZ:XU,ui)ui :

Therefore, <ws,u>= <z (v,uu,,

k
I=k+1 i=1

i )= 33w o,0)=0

I=k+1 i=1
(because | =i for | =k+1,...,nand i = 1,...,k).

Hence, w2 Lu for all u eW. this means that w, € W*. We next prove that the
expression v = wi+wz for wi € W and w2 eW- is unique. To do that, let v = w, +w, be
another expression such that w, € W and w, € W= _ It follows that v = wi+wz = w, + w, =
Wi - W, = W,- Wo. Hence, w1 - w, € W and also w1 - w, = w,- w2 W™, This yields w; -
w, eW nW-={0} = w1 - w, = 0 = w1 = w, . Similarly, w, =w,. Therefore, the
expression V = w1 + w; for wi € W and w2 € W is unique.

4.2. Definition:
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1) Lef W be a nontrivial subspace of V. Since for all v € V, v can be uniquely
expressed as v = w1 + w2 with w1 € W and w2 € W+, we write this relation as V = W & W+,

and call V the direct sum of W and W+,
2) We denote by P the mapping P:V > W
P(v)=wiifv=ws +w;
where w1 € W and w. € W+, Then, P is called the orthogonal projection on to W.
Remarks:
1) Looking at the proof of Theorem 4.1, we obtain that:

For an ON — basis S = {u,..., ux} of W, the orthogonal projection P on W can be
determined by

P:V-o>W
k

P(v) = z<v,ui>ui forallv e V.
i=1

2) For an othogonal projection P: V. — W we have that, P is a linear operator

satisfying properties that P2 = P; Ker P = WL and ImP = W.

Example: Let V = R® with usual scalar product and W = Span{(1,1,0); (1,-1,1)} and
P: V — W be the orthogonal projection onto W, and v = (2,1,3). We now find P(v). To do so,
we first find an ON — basis of W. This can be easily done by using Gram-Schmidt process to

obtain

e

Then P(V)= <v, u>up + <v, uz> uz =(1, -1,-2).

4.3. Lemma: Let V be an Eudidean space; W be a subspace of V, and P: V — W be

the orthogonal projection on W. Then |[v—u| > |v—P(v)| forall v eV and u eW.

PROOF: We start by computing

||V — u|| 2 = ||V —P(v)+P(v)— u|| 2
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Since v — P(v) € W+ and P(v) —u €W (because v = P(v)+v — P(v) where P(v) eW

and v — P(v) eW"), we obtain using Pithagorean Theorem that
IV =P(v) +P(v) —u|?= |v— P(v)||2 +|P(v) - u||2 > v - P(v)||2 .
Therefore, |[v—u| > [|v — P(v)]; and the equality happens if and only if u = P(v).
4.4. Application: Least square approximation

For A € Mmxn(R); B € Mmx1(R) consider the following problem.

Problem: Let AX = B have no solution, that is, B ¢ Colsp(A). Then, we pose the

following question:
Which vector X will minimize the norm || AX-BJ[?>?
Such a vector, if it exists, is called a least square solution of the system AX = B.

Solition: We will use Lemma 4.3 to find the least square solution. To do that, we

consider V = Mmx1(R) with the usual inner product <u,v>=u'v foralluandv € V..

Putting colsp (A) = W and taking into account that AX eW for all X € Mna(R), we

obtain, by Lemma 4.3, that || AX-B||? is smallest for such an X =X that AX = P(B), where
P: V —>W is the orthogonal projection on to W, (since || AX-BJ||> = || B - AX||> > || B- P(B)||?
and the equality happens if and only if AX =P(B) ).

We now find X such that AX = P(B). To do so, we write
AX —B=P(B)-BeW-.
This is equivalent to
AX-B LUforallUe W = Colsp (A)
< AX —B L CiVi=12..n (where Ciis the i column of A)
&<AX -B,Ci>=0Vi=12..n.
& CI(AX-B)=0Vi=12.n.
< AT(AX —B)=0<ATAX ~ATB=0
o ATAX =ATB (4.1)

Therefore, X is a solution of the linear system (4.1).
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1 1 2Yx) (1
Example: Consider the system |1 -1 0| x, |=|1
0 1 1)x 2

Sincer(A)=2<r (;&) = 3, this system has no solution. We now find the vector X

1 1 2 1
such X minimizes the norm IAX - B|? whereA=|1 -1 0[;B=]1
0O 1 1 2

To do so, we have to solve the system

ATAX =ATB
2 0 2)x 2
<0 3 3|x%,|=|2
2 3 5\ X, 4
X, =1-X,
X, +X; =1 2
= 2 S X, =——Xg
x2+x3=§ 3

X, IS arbitrary

1-t
We thus obtain X = %—t VteR.
t

V. Orthogonal matrices and orthogonal transformation

5.1. Definition. An nxn matrix is said to be orthogonal if ATA =1 = AAT (i.e., Ais

nonsingular and A = AT)

cosa. Sina
Examples: 1)A:( ) J
—sino. COSa
L
V2o 2
1 1
2)A=|-— — 0
AR N
0 0 1
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5.2. Proposition. Let V be an Euclidean Space. Then, the change —of—basis matrix

from an ON — basis to another ON — basis of V is an orthogonal matrix.
PROOF. Let S = {ey, €2, ....en} and U={us, Uo,...,un} be two ON — bases of V and A
be the change—of-basis matrix from S to U, say A = (ajj). Putting AT = (bij); ATA = (i)

where bjj = aji; compute

alJ
\ n aZJ
Cj= D by =D 8,8, = (au @i ... ani)
a P
an.]

= <Zakiek,2auel>=< u,u, > = |[1ifi5]
k=1 1=1
Oifi=
Therefore, ATA = I. This means that A is orthogonal.

Example: Let V = R® with the usual scalar product < .,. >

S ={(1,0,0), (0,1,0),(0,0,1)} be the usual basis of R?;

1 1 1 1 2 1 1 1 )
U={|—=-—01[ —=,—=,——= || —=.,—,— |} be another ON — basis of R®.
{(ﬁ V2 MJE J6 JEMJ? 3 ﬁj}

Then, the change — of — basis matrix for Sto U is

5=

. Clearly, A is an orthogonal matrix.

o sl‘
o5l-51-
~ &= -

Vo 3
5.3. Definition. Let (V, <.,. >) be an IPS. Then, the linear transformation f: V — V is
said to be orthogonal if < f(x),f(y) > = <x,y> for all x,y € V.

The following theorem provides another criterion for the orthogonality of a linear

transformation in Euclidean spaces.

5.4. Theorem: Let V be an Euclidean space, and f: V — V be a linear transformation.

Then, the following assertions are equivalent.

i) T is orthogonal.
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ii) For any ON — basis S of V, the matrix representation [f]s of f corresponding to S is

orthogonal.
i) [[f(X)]| = |Ix|| for all x eV.

PROOF: Let S be an ON — basis of V. Then, taking the coordinates by this basis, we

obtain
<f(x), f(y)> =[ f ()15 [f(y)1s = ([Fls[x]s)" [FX)1s[f(y)]s
= [x]s [f15 [Flslyls

Therefore, for an ON — basis S = {uy,Uz,...,un} of VV, we have that:

<f(x), f(y)>=<x,y> V X,y €S
o XE[FELf L) = [xElylvxy es.

1 ifi=j
vijed{l2.
0 ifinj )N

S RIITIb BTk -

o [fLE[f]s =1 < [f]; is an orthogonal matrix.

We thus obtain the equivalence (i) < (ii). We now prove the equivalence (i) < (iii).

(i) = (iii): Since < f(x), f(y) >= <x,y> holds true for all x,y €V, simply taking X =y,

we obtain || f(x)[|2=[I{[2= (1100 1] =]V x e V.

(iii) = (i): We have that || f(x +y)[|2 =[x +yl| ? for all x,ye V. Therefore,
(fx+y), f(x+y) ) =(x+y,x+Y).
= (f(x), F(x)+2(F(x), F(y) +{(F(y) F(y)= (X x)+2(x,y)+{y.y)

= (f(x), f(y)=(xy) ¥xyeV.
5.5. Definition: Let A be real nxn matrix. Then A is said to be orthogonally
diagonalizable if there is an orthogonal matrix P such that PTAP is a diagonal matrix.

The process of finding such an orthogonal matrix P is called the orthogonal

diagonalization of A.

Remark: If A is orthogonally diagonalizable, then, by definition, 3 P — orthogonal
such that
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PTAP = D — diagonal = A = PDP" = AT =PDPT = A.
Therefore, A is symmetric.
The converse is also true as we accept the following theorem.

5.6 Theorem: Let A be a real, nxn matrix. Then, A is orthogonally diagonalizable if
and only if A is symmetric.

The following lemma shows an important property of symmetric real matrices.

5.7. Lemma: Let A be a real symmetric matrix; and A1; A2 be two distinct eigenvalues
of A; and X1, X2 be eigenvectors corresponding to A1, A2, respectively. Then, X1 L Xz with

respect to the usual inner product in Mnx (R) (that is, (X;,X,)=X] X2 =0)
PROOF: Infact, (1, X;,X,)=21,X{X, =(AX;)" X,
TAT T T

Therefore, (A1~ A2)(X;,X,)=0. Since A1# Ao, this implies that (X, X,)=0.

Next, we have the algorithm of orthogonal diagonalization of a symmetric real matrix A.

5.8. Algorithm of orthogonal diagonalization of symmetric nxn matrix A:

Step 1. Find the eigenvalues of A by solving the characteristic equation
det(A-Al)=0
Step 2. Find all the linearly independent eigenvectors of A, say , X1, Xa,... Xn.

Step 3. Using Gram — Schmidt process to obtain the ON — basis {Y1, Y2,... Yn} from
{X1, X2, ... Xn}; (Note: This Gram-Schmidt process can be conducted in each eigenspace

since the two eigenvectors in distinct eigenspaces are already orthogonal due to Lemma 5.7).

Step 4. Set P =[Y1 Y2... Yn]. We obtain immediately that

A 0. 0
0 A4,.. 0
PTAP=| . *7 .
0 0.. 4,
where i is the eigenvalue corresponding to the eigenvector Y, i=1,2..., n,

respectively.
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0 1 1
Example: LetA=|1 0 1
1 1 0

To diagonalize orthogonally A, we follow the algorithm 5.8.

Firstly, we compute the eigenvalues of A by solving: |A- Al =0

-1 1 1
|1 =X 1]=00+1)’L-2)=0<
7\.«3:2
1 1 =X

For A1 = X2 =- 1, we compute eigenvectors X by solving.

X1
(A+E)X=0ox1+Xx2+x3=0for X=X,

X3

Then, there are two linearly independent eigenvectors corresponding to A = -1, that are

1 0 1 0
Xi=|-1}X,=|1 [.Inotherworlds, the eigenspace E(1) = Span | —1 |;| 1
0 -1 0 -1
1
By Gram — Schmidt process, we have us =vi=| —1 |;
0
_1
2
1
U2 =V2 - M.u1 =| ——|. Then, we put
<up,u; > 2
1
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5=
—

vi= Y1 _ iy, = U2 _
1= = Y2 = =
Ul | V2 |05

to obtain two orthonormal

S &=

o

v

eigenvectors Y1, Y2 corresponding to A = -1.
For Az =2, We solve (A —2E) X=0
—2X; +X, +X3 =0 X 1
= X1_2X2+X3:O = X2 :X1 1
Therefore, there is only linearly independent eigenvector corresponding to A = 2. The

1

eigenspace is E2 = Span <| 1 |¢. To implement the Gram-Schmidt process, we just have to
1

put Yz =

Sl Gl

We now obtain the ON — basis {Y1, Y2, Y3} of Msx (R) which contains the linearly

independent eigenvectors of A. Then, we put

111
V2o 6 V3 -1 0 O
1 1 1 ] e
P=|-—— —— —— |toobtainPTAP=| O —1 0| finishing the orthogonal
2 I | |
0 2 1 0 0o 2
J6 3

diagonalization of A.

IV. Quadratic forms

6.1 Definition: Consider the space R". A quadratic form q on R" is a mapping

g: R" — R defined by
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q(X1, X2,... Xn) = ZCquXj for all (x1, X2,... Xn) € R" (6.1)
I<i<j<n
where the constants cij € R are given, 1 <i<j<n.

Example: Let g : R® - R be defined by
0 (X1, X2, X38) = X] —2X X, —X[X3 + X5 —2X,X3 — X3 V (X1, X2, X3) € R°.

Then q is a quadratic form on R3,

6.2. Definition: The quadratic form g on R" is said to be in canonical form (or in

diagonal form) if
(X1, X2, «..y Xn) = C11X7 +C22X5 + ..+ Con X2 for all (x1,X2,...%n) € R".

(That is, g has no cross product terms Xix;j with izj).

We will show that, every quadratic form q can be transformed to the canonical form

by choosing a relevant coordinate system.
In general, the quadratic form (6.1) can be expressed uniquely in the matrix form as
q(X)=q(X1, X2, ..., Xn)=[X]TA[X] for x=(X1, X, ..., Xn) € R"
Ty

Ty

where [X] = is the coordinate vector of X with respect to the usual basis of R" and

'Tn

A = [a] is a symmetric matrix with aij = a;i = ¢;j/2 for i #j, and aii = cii for i=1,2...n.

This fact can be easily seen by directly computing the product of matrices of the form:

a, a, - 4, X1
a a ... a X

q(X1,X2..., Xn) = (X1 X2 ... Xn) :21 f’z . ?n 2 =T AN
anl a'n2 a'nn X

n

The above symmetric matrix A is called the matrix representation of the quadratic

form g with respect to usual basis of R".

6.3. Change of coordinates:
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Let E be the usual (canonical) basis of R". For x = (Xs,...,Xxn)eR", as above, we denote
by [X] the coordinate vector of x with respect to E. Let q(x) = [x]"A[X] be a quadratic form
on R" with the matrix representation A. Now, consider a new basis S of R", and let P be the
change-of-basis matrix from E to S. Then, we have [x] = [X]e = P[X]s .

Therefore, g = [X]"A[X] = [X]g PTAP[X]s.

Putting B = PTAP; Y = [X]s, we obtain that, in the new coordinate system with basis S, q has
the form:
q=YTBY, where B=PTAP and Y = [X]s.
Example: Consider the quadratic form

g: R® — R defined by q(X1,X2,X3) = 2X1X2 +2X2X3 +2X3X1, OF in matrix representation

by
0 1 1 Xl Xl
g=(uxexs) |1 O 1| x,|=XAX for X =|x, |-the coordinate vector of
1 1 O X3 X3

X1,X2,X3) WIt respecttot € usual pasis 0 . Let S = ,U,0); ,4,0); 4, e another
( ) with h | basis of R3. Let S = {(1,0,0); (1,1,0); (1,1,1)} be anoth

basis of R3. Then, we can compute the change-of —basis matrix P from the usual basis to the

basis S as
1 1 1
P=(0 1 1
0O 0 1
X1 Y1
Thus, the relation between the old and new coordinate vector X = | X, [and Y = |y, | =
X3 ¥3
X4 I 1T 1)\(y
[(x1, X2, x3)]s is| X, |=|0 1 1]|y, |. Therefore, changing to the new coordinates,

we obtain

g=X"AX = Y'PTAPY
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10 0Y(0 1 1\(1 1 1\(y,
—(iy2ys)|1 1 0f|1 0 1[0 1 1||y,
11 1)Lt 1 0Jlo o 1)ly,
1 1 2)\(y,
=(y1y2y3) |1 2 4]y,
2 4 6)ly,

2 2 2
= y1 +2y; +6y3 +2y,y, +4y,y3 +8y3y;.
6.4. Transformation of quadratic forms to principal axes (or canonical forms):

Consider a quadratic form ¢ in matrix representation: g = XTAX, where X = [x] is
the coordinate vector of x with respect to the usual basis of R", and A is the matrix
representation of g.

Since A is symmetric, A is orthogonally diagonalizable. This means that there exists

an orthogonal matrix P such that PTAP is diagonal, i.e.,

A 0 - 0
_— , = 0 ) )
PPAP=1 . ° . . |-adiagonal matrix.

0 O A

n

We then change the coordinate system by putting X = PY. This means that we choose a new
basis S such that the change—of-basis matrix from the usual basis to the basis S is the matrix

P. Hence, in the new coordinate system, g has the form:

A 0 - 0
q=X"TAX=YTPTAPY=YT| . ? Y
0 0 h
Y1
= Kly% + Xzy% + ...+?»ny12l forY=|y,
ys3

Therefore, g has a canonical form; and the vectors in the basis S are called the principal axes
for q.
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The above process is called the transformation of g to the principal axes (or the

diagonalization of g). More concretely, we have the following algorithm to diagonalize a

quadratic form q.

6.5. Algorithm of diagonalization of a quadratic form q = XTAX:

Step 1: Orthogonally diagonalize A, that is, find an orthogonal matrix P so that PTAP

is diagonal. This can always be done because A is a symmetric matrix.

Step 2. Change the coordinates by putting X = PY (here P acts as the change—of—

basis matrix). Then, in the new coordinate system, g has the diagonal form:

A, 0 - 0

o 0 Ay - O Y1

g= Y'P'APY =(y1 Y2... Yn) : A2

0 0 - A, Y3

= klyf +K2y§ +.t Xnyi finishing the process.
Note that A1,A2,..., An are all eigenvalues of A

0 1 1)x
Example: Consider g = 2xiX2 +2X2X3 +2x3x1= (X1 x2x3)| 1 0 1 | x,
1 1 0)xs4

To diagonalize q, we first orthogonally diagonalize A. This is already done in

Example after algorithm 5.8, by this example, we obtain

N
J2 6 3 -1 0 0
1 1 1 .
P=|-—- -—= ——=|forwhich PPAP=| 0 -1 0
J2. 6 3
0 2 1 0 0 2
N[INE]

We next change the coordinates by simply putting
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X1 Y1
Xy | =P Y,
X3 y3

Then, in the new coordinate system, g has the form:

¥Y1 -1 0 0)(y,
a=(1y2y) PTAP |y, [=(ayays) | O =1 0|y, |=-yi —¥3 +2y3
ys3 0 0 2)\y;

6.6. Law of inertia: Let g be a quadratic form on R". Then, there is a basis of R" (a
coordinate system in R") in which q is represented by a diagonal matrix, every other diagonal
representation of q has the same number p of positive entries and the same number m of

negative entries. The difference s= p - m is called the signature of g.

Example: In the above example q = 2Xi1X2 +2X2X3 +2X3X1 we have that p = 1; m=2.
Therefore, the signature of g is s = 1-2 = -1. To illustrate the Law of inertia, let us use

another way to transform q to canonical form as follow.

X1=Y1—¥2
Firstly, putting <x, = y'2 + y'2 we have that

X3=Y3
2 2 Do
4=2y; =2y, +4y1y3
2 Co 2 2 , 2
=2|yp +2y1y3+ys [=2yy —2yy—2y;
, . 2 2
=2(y1+y3)2—2y2 —2y; -
YI=Y1tY3
Putting {y, = y5 we obtain q =2y —2y> —2yZ.
Y3=Y3
Then, we have the same p=1; m=2; s=1-2 =-1 as above.

6.7 Definition: A quadratic form q on R" is said to be positive definite if q(v) > 0 for

every nonzero vector v e R".
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By the diagonalization of a quadratic form, we obtain immediately the following

theorem.

6.8. Theorem: A quadratic form is positive definite if and only if all the eigenvalues

of its matrix representation are positive.

VI1I. Quadric lines and surfaces

7.1. Quadric lines: Consider the coordinate plane xOy.
A quadric line is a line on the plane xOy which is described by the equation
a11x? + 2a1Xy + azy? + bix + by + ¢ =0,
or in matrix form:

a,, a
11 @9
(xy)
(g Qg

where the 2x2 symmetric matrix A = (a;;) # 0.

We can see that the equation of a quadric line is the sum of a quadratic form and a
linear form. Also, as known in the above section, the quadratic form is always transformed to
the principal axes. Therefore, we will see that we can also transform the quadric lines to the

principal axes.

7.2. Transformation of quadric lines to the principal axes:

Consider the quadric line described by the equation
X X
(x y)A[ j+B( ]—i—C:O (7.1)
y y

where A is a 2x2 symmetric nonzero matrix, B=(b1 b2) is a row matrix, and ¢ is constant.
Basing on the algorithm of diagonalization of a quadratic form, we then have the following

algorithm of transformation a quadric line to the principal axes (or the canonical form).
Algorithm of transformation the quadric line (7.1) to principal axes.

Step 1. Orthogonally diagonalize A to find an orthogonal matrix P such that
A O
PTap=|""
0 X,

108



Nguyen Thieu Huy, Lecture on Algebra

x x!
Step 2. Change the coordinates by putting [ ]:P[ '] :
Yy (

Then, in the new coordinate system, the quadric line has the form
AT 24 Ay bix'%— b'Zy'+ c=0

where (b; b,)=(b, b,)P.

Step 3. Eliminate the first order terms if possible.
Example: Consider the quadric line described by the equation
X242Xy+y?+8x+y=0 (7.2)

To perform the above algorithm, we write (7.2) in a matrix form

e o

1 1
Firstly, we diagonalize A = (1 1] orthogonally starting by computing the

eigenvalue of A from the characteristic equation

1-1 1 2, =0
=0
1 1-2 Ay =2

1
For A1 =0, there is one linearly independent eigenvector u; = ( j

1
For A2 = 2, there is also only one linearly independent eigenvector UZZ(J

The Gram-Schmidt process is very simple in this case. We just have to put

1 1

U |42 u, |2
ey = = , €, = = .

full |1 fu Il | 1

J2 J2
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L
0 O
Then, setting P = V2 we have that PT AP =
11 0 2
V2 2
LI
Next, we change the coordinates by putting [ij \/51 \/15 (ij
y _— Yy
V2 2
Therefore, the equation in new coordinate system is
1 1
0 0\x A, (X
(x'y' +(8 1 V2. V2 —0
0 2Ny Ly
V2 2

=3 2y'2+lx'+iy =0

V2O 2

<:>2(y'+ 0 j2+ 7 x'—ﬁ'gl =0
42 ) 2 112

(We write this way to eliminate the first order term 9 y')

J2

Now, we continue to change coordinates by putting

 81\2
112

Y:y'+i

42

In fact, this is the translation of the coordinate system to the new origin

(a2

112 "44/2
Then, we obtain the equation in principal axes:

2Y? + lX =0.

J2
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Therefore, this is a parabola.
7.3. Quadric surfaces:
Consider now the coordinate space Oxyz.

A quadric surface is a surface in space Oxyz which is described by the equation
a11X%+ agoy?+assz’+2a1oXy+2a23yZ + 2a13zX+h1x+hoy+hsz + ¢ =0

or, in matrix form

all alZ al3 X X
(x vy z)a, a, a,|y|+{b, b, b)yl+c=0,
a13 a23 a‘33 z z

where A =(ajj) is a 3x3 symmetric matrix; A = 0.

Similarly to the case of quadric lines, we can transform a quadric surface to the

principal axes by the following algorithm.

7.4. Algorithm of transformation of a quadric surface to the principal axes (or to

the canonical form):

Step 1. Write the equation in the matrix form as above

X X
(x y Z)Ay +B|y |+c=0.

Z Z

Then, orthogonally diagonalize A to obtain an orthogonal matrix P such that

Ay 0 O

PTAP=| 0 A, O
0 0 A4
X X'

Step 2. Change the coordinates by putting | y |=P| y'

'

zZ Z

Then, the equation in the new coordinate system is

X2+ A, Y2+ 2,7+, x'+b, y'+b,z'+Cc = 0
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where (b, b, b)=(b, b, b,)P
Step 3. Eliminate the first order terms if possible.
Example: Consider the quadric surface described by the equation:

2Xy + 2XZ + 2yz - 6x -6y —4z2=0

0O 1 1)x X
<:>(x y z)1 0 1|y +(—6—6—4 y [=0.
1 1T 0O\z z

0 1 1
The orthogonal diagonalization of A = |1 0 1| was already done in the
1 1 0

example after algorithm 5.8 by that we obtain

111
J2. B 3 -1 0 0
1 1 1 .
P=|-—- -—= ——=|forwhichPTAP=| 0 -1 0].

J2. 6 V3

5 1 0 0 2
0 N -

J6 3
X X'

Wethenput | y |=P| y' | to obtain equation in new coordinate system as

'

Z V4

111
5 % Bl

- . 1 1 1

CX?_y?42724(-6 -6 -4)|-— —— ——|y|=0

y ( N5 % B
o2 e

5 7

. . . 4 16
& XP-yP 421t —=y-—=
! NCRNE

2 2
@-xz-(y'—%j +2(Z'—%j -10=0

Now, we put (in fact, this is a translation)

z'=0
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X=x'

Y = y,_i (the new origin is I(O,i;ij)

J6 6 /3

Z=7-—

\ V3

to obtain the equation of the surface in principal axes

X% +Y?-27%=-10.
We can conclude that, this surface is a two-fold hyperboloid (see the subsection 7.6).

7.6. Basic quadric surfaces in principal axes:

2 2
1) Ellipsoid: %+JT+ -1

z2
CZ

(If a=b =c, this is a sphere)
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2 2 2
2) 1 fold hyperboloid ~ + 2=~ “>- =1
a

b2 ¢

2 2 2

3) 2 — fold hyperboloid % + ;’_2 _
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X2 y2
4) Elliptic paraboloid a—2+b—2— z=0

(If a = b this a paraboloid of revolution)

2 2 .2
X z
5) Cone: —2+y———2=0

a b ¢
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2 2
6) Hyperbolic — paraboloid (or Saddle surface) X—z - g—z -z=0
a

7) Cylinder: A cylinder has one of the following form of equation:
f(x, y) =0; or f(x, z) = 0 or f(y, z) = 0.

Since the roles of x, y, z are equal, we consider only the case of equation f(x,y) = 0.
This cylinder is consisted of generating lines paralleling to z—axis and leaning on a directrix
which lies on xOy — plane and has the equation f(x,y) = 0 (on this plane).

Example of quadric cylinders:

) x*+y?=1
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2)x?-y=0

3) x>-y?=1
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