Objective: To provide the knowledge and calculation skills on infinite series and basic differential equations, one-sided Laplace transform, to formulate Mathematical foundations for students majored in technology, to provide mathematical tools for students.

Contents: Infinite number series, series of functions, Fourier series, first-order differential equations, second-order linear differential equations, systems of first-order differential equations, Laplace transforms, some models and modeling of technical problems.

1. GENERAL INFORMATION

Course title:
Course ID:
Course Units:

Calculus III
MI1131E
3(2-2-0-6)

- Lecture: 30 hours
- Seminar: 30 hours

Previous module:

Prerequisites:

- MI1111E Calculus I
- MI1121E Calculus II

2. DESCRIPTION

This course provides students with the basic knowledge on infinite series, differential equations, and the Laplace operator method.
3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
M1	Master the basic knowledge about series, ordinary differential equations	
M1.1	Master the basic concepts	I/T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U
M2.2	Identify some practical problems that can be solved by using tools of series, differential equations and Laplace operator method	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

[1] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). Toán học cao cấp tập 3: Chuỗi và phương trình vi phân. NXB Giáo dục VN.
[2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). Bài tập Toán học cao cấp tập 3: Chuồi và phuơng trình vi phân. NXB Giáo dục VN.
[3] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (2000). Bài tập Toán học cao cấp tập II. NXB Giáo dục.
[4] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (1999). Bài tập Toán học cao cấp tập III. NXB Giáo dục.

References

[1] Trần Bình (2005). Giải tích II và III, NXB KH và KT.
[2] Lê Ngọc Lăng, Nguyễn Chí Bảo, Trần Xuân Hiển, Nguyễn Phú Trường. Ôn thi học kỳ và thi vào giai đoạn II. NXB Giáo dục.
[3] Lê Ngọc Lăng, Tống Đình Quỳ, Nguyễn Đăng Tuấn, Mai Văn Dược (1998). Giúp ôn tập tốt môn Toán cao cấp. NXBKH.
[4] Đinh Bạt Thẩm, Nguyễn Phú Trường (1993). Bài tập Toán học cao cấp tập II. NXB Giáo dục.
[5] Nguyễn Xuân Thảo (2010). Bài giảng Phuơng pháp Toán tư Laplace.
[6] Nguyễn Thiệu Huy: Infinite series and differential equations. download: http://sami.hust.edu.vn/tai-lieu/

5. ASSESSMENT

Components	Evaluation method	Description	Rated outcome standards	Proportion
[1]	[2]	[3]	[4]	[5]
A1. Attendance point	Learning attitude and attendance of the students during the course	Learning attitude of the students		20\%
A2. Periodic test mark (*)	A2.1. $1^{\text {st }}$ periodic test (KT1 mark, 15 scale) (Content: From the $1^{\text {st }}$ week to the $5^{\text {th }}$ week) A2.2. $2^{\text {nd }}$ periodic test (KT2 mark, 15 scale) (Content: From the $6^{\text {th }}$ week to the $10^{\text {th }}$ week)	Quizzes	$\begin{aligned} & \text { M1.1, M1.2, } \\ & \text { M2.1, M2.2, } \\ & \text { M2.3 } \end{aligned}$	30\%
A3. Final exam mark	Final exam	Essay	$\begin{aligned} & \mathrm{M} 1.1, \mathrm{M} 1.2, \\ & \mathrm{M} 2.1, \mathrm{M} 2.2, \end{aligned}$	50\%

(*) Periodic test mark (DKTDK) is calculated according to the formula DKTDK
$=1 / 3($ KT1 + KT2) and will be adjusted by adding points for the performance of students during
the course which vary from -1 to +1 according to the Rule of School of Applied Mathematics
and Informatics accompanied with the Regulations of Higher Education of Hanoi University
of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1. Series (11+11) 1.1 Infinite number series - Definitions: Number series, general term, partial sums, remainder, convergence, divergence, sum of a series. Note: including geometric series $\sum_{n=0}^{+\infty} a q^{n}$. - Necessary condition for convergence (with proof). Note: including the harmonic series $\sum_{n=1}^{+\infty} \frac{1}{n}$. - Fundamental properties of convergent series (proofs for self-study) 1.2 Series of non-negative terms - Definition - Comparison tests (including proof of the first comparison test, proof of the second one is for self-study) - Tests for convergence (D'Alambert's test, Cauchy's test, integral test) (including the proof of D'Alambert's test, the proofs of the other are for self-study). Note: $\text { including } \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$	M1, M2	Lecturer: - Selfintroduce - Introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to the content and progress of the subject	$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$
2	1.3 Series of sign-changing terms	M1, M2	Lecturer:	A2.1

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	- Series of sign-changing terms: definitions of absolute convergence, conditional convergence. Theorems on absolutely convergent series (proofs for self-study) - Alternating series: definition, Leibniz's test (with proof) - Properties of absolutely convergent series. Properties of rearrangement of terms and the product of two series (proofs for self-study)		- Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises as well some practical models connected with the subject	A3
3	1.4 Series of functions - Definitions: series of functions, domain of convergence (pointwise convergence), sum of a function series - Uniform convergence: definition, Cauchy's test, Weierstrass' test (without proof) - Properties of uniformly convergent function series: continuity, differentiation, integration (proofs of the last two properties are for self-study)	M1, M2		$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$
4	1.5 Power series - Definition, Abel's theorem (with proof), radius, interval and domain of convergence - Properties: uniform convergence, continuity of the sum, termwise differentiation and integration (proofs for self-study). Applications in finding sum of a series (one example, self-study) - Representation of functions by power series (Taylor's series, Maclaurin's series). Theorems on expandability of a function in a power series (without proof)	M1, M2		$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$
5	- Expansion of some elementary functions. Applications in approximating the value of functions and definite integrals (for selfstudy) 1.6 Fourier series - Trigonometric series, Fourier series - Conditions for expanding a function to Fourier series. Dirichlet's theorem (without proof)	M1, M2		$\begin{gathered} \mathrm{A} 2.1 \\ \text { A3 } \end{gathered}$
6	- Fourier expansion of odd and even 2π	M1, M2		A2. 2

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	periodic functions of period 2π - Fourier expansion of 2π periodic functions, $2 l$ period functions. Fourier expansion of functions defined on an interval $[a, b]$ Chapter 2. Ordinary differential equations (11+12) 2.1 Introduction - Definition: ordinary differential equations (ODEs), order of an ODE, solutions to an ODE 2.2 First order ODEs - Outlines about first order ODEs: general forms, existence and uniqueness theorem (without proof), Cauchy problem, general solutions, particular solutions. Introductory practical examples of first order ODEs			A3
7	- Equations without x or y - Separable equations - Homogeneous equations - Linear equations - Bernoulli equations - Exact equations	M1, M2		$\begin{gathered} \text { A2.2 } \\ \text { A3 } \end{gathered}$
8	2.3 Second order differential equations - Outlines about first order ODEs: general forms, existence and uniqueness theorem (without proof), Cauchy problem, general solutions, particular solutions. Introductory practical examples of second order ODEs - Equations without y and y^{\prime}; Equations without y; Equations without x - Linear equations $y^{\prime \prime+}+p(x) y^{\prime}+q(x)=f(x)$ Homogeneous linear equations: structure of general solutions (proofs of the theorem yielding the formula $y=C_{1} y_{1}(x)+C_{2} y_{2}(x)$)	M1, M2		$\begin{gathered} \text { A2.2 } \\ \text { A3 } \end{gathered}$
9	Midterm break			
10	Nonhomogeneous linear equations: structure of general solutions (proof for self-study)	M1, M2	Lecturer: - Lecture,	$\begin{gathered} \text { A2.2 } \\ \text { A3 } \end{gathered}$

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	Lagrange method of variation of parameters Superposition principle - Second order linear ODEs with constant coefficients Homogeneous linear equations		exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject	
11	Nonhomogeneous linear equations with right-hand side of the forms $\begin{aligned} & f(x)=e^{\alpha x} P_{n}(x) \\ & f(x)=e^{\alpha x}\left[P_{n}(x) \cos \beta x+Q_{m}(x) \sin \beta x\right] \end{aligned}$	M1, M2		$\begin{gathered} \text { A2. } 2 \\ \text { A3 } \end{gathered}$
12	- Euler equations (introduction by examples) 2.4 Systems of first order ODEs - Definition, general form, solutions, convert higher order ODEs into systems of first order equations and vice versa. Existence and uniqueness theorem. - Solving by substitution: illustrated by a simple example (this part is for self-study)	M1, M2		A3
13	Chapter 3. Laplace transform and applications (8+7) 3.1 Laplace transform and inverse Laplace transform - Laplace transform, linearity property, tables of Laplace transform, piecewise continuous functions, existence of Laplace transform. Examples - Inverse Laplace transform, uniqueness of inverse Laplace transform. Examples	M1, M2		A3
14	3.2 Transform of initial value problems - Transform of the derivative of a function, solutions of initial value problems, examples of solving second order linear ODEs with constant coefficients - Systems of second order linear ODEs, introduction to mathematical modeling - Transform of the integral of a function	M1, M2		A3
15	3.3 Shifting properties and partial fractions - Linear partial fractions, irreducible quadratic partial fractions, s - shifting	M1, M2		A3

Week	Topics	Objective	Activities	Exercises
$[\mathbf{1]}$	[2]	$[3]$	$[4]$	$[5]$
16	- Solving higher order (greater than or equal to 3) ODEs with constant coefficients			A3
	$\mathbf{3 . 4}$ Derivatives, integrals and product of Laplace transforms - Convolution of two functions, Laplace transform of convolution - Derivative of Laplace transform - Integral of Laplace transform - Solving homogeneous linear second order ODEs with variable coefficients	M1, M2		
- Solving linear second order ODEs with constant coefficients and piecewise continuous righthand side				

7. COURSE REGULATIONS

(Regulations of the course if any)
8. DATE OF APPROVAL: \qquad

